
Activity Handbook

How to get started with
software development
for the OLPC XO

�

Table of Contents

Welcome to the Activity Handbook! �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� 4

1��Introduction to Sugar �� 6

���Preparation �� 13

Emulation �� 14
Linux �� 14
Mac OS X �� 14
Windows XP �� 14
QEMU on Windows �� 15
VirtualBox �� 15
VMWare �� 16
Live-CD �� 18
(1) LiveBackup Live-CD �� 18
(�) Xubuntu Live-CD �� 19
(3) Pilgrim Fedora Live-CD [DIY] �� 19
sugar-jhbuild �� �0
Ubuntu packages �� �1
Ubuntu (7��10 Gutsy Gibbon / 8��04 Hardy Heron) �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �1
XO Laptop ��
Links �� �3

3��Sugar Basics �� �4

The package layout �� �5
The package files in more detail �� �6
MANIFEST �� �6
HelloWorldActivity��py �� �6
setup��py �� �7
activity��info �� �8
icon��svg �� �9
xo bundle �� �9
Localization issues �� 30

3

4��Sugar User Interface��Sugar User Interface �� 31

Toolbox/toolbars �� 3�
Links �� 34

5��Datastore and Collaboration �� 35

D-Bus - the heart of Sugar services �� 36
The Activity Life Cycle �� 36
Startup �� 36
Operation �� 36
Shutdown �� 37
The datastore �� 37
Metadata �� 37
Progressbar �� 39
Mountpoints �� 40
Fileaccess �� 40
Collaboration �� 41
Sharing �� 41
Inviting �� 41
Joining �� 4�
Leaving �� 4�
Buddies �� 4�
Tubes �� 4�
Stream Tubes �� 43

6�� Journal �� 45

Storing Journal entries �� 47
Retrieving Journal entries �� 49
Journal UI �� 50
Links �� 51

7�� Input Devices�� Input Devices �� 5�

Camera �� 53
StopMotion Activity �� 53
Game Buttons �� 57
Microphone �� 59
Links �� 59

4

Welcome to the Activity Handbook!

The purpose of this handbook is to provide you with all the information you need in
order to get started with software development for the OLPC XO. We assume that all
of you have used books such as „Teach Yourself C / Java / Visual Basic in 21 Days“
and we want to provide a similar source of information for interested readers. The
main difference here is that this handbook is not going to teach you the basics of
programming. Neither are we going to teach you Python, the programming language
we are mostly going to rely on, in this handbook. There are many other sources for
learning these things and it would go far beyond the scope of this handbook to serve
as an introduction to programming and / or Python. What we however do want to
give you is a head start when it comes to writing software for the XO. To that end
we will give you a detailed overview of both the hardware and software which is
used in this remarkable machine.

Our motivation to write this handbook arose from our own desire to write code for
the XO. We just did not know how to do it and the documentation we found on the
internet was not as helpful as we had hoped. So we basically consider ourselves
to be members of the target group that we envision this document to be useful for.
We are writing the document we had hoped to find when we started out with XO
software development ourselves. When we started working on this handbook in
early October 2007 the documentation, especially when it comes to the software, of
the XO left much to be desired. Realizing this OLPC had started looking for a „docu-
mentation lead“ and various discussions took place in order to gather feedback on
what documentation was needed. The OLPC Wiki contained several entries related
to software development but there was no single coherent document that contained
all the information a developer needs in order to get started with writing code. So
while it was certainly doable to find that information it was by no means comforta-
ble. Basically the barrier to entry was higher than it should have been.

When it comes to software development and especially documentation the process
behind it is as important as the final result. So allow me to take a step back and de-
scribe how we currently envision this whole thing to work. As previously mentioned
we feel that with documentation it is important to have a coherent piece of writing
that readers can rely on. This thought lead us to the decision that a Wiki is not the
best way of organizing the information the way we want to present it. We have

5

therefore settled for the DocBook format (http://en.wikipedia.org/wiki/Docbook) as
the basis for this handbook. This decision of course entails that only a small number
of people can actually actively edit and enhance the handbook. While this might
seem like a limitation for some people we feel it is a necessary step in order to
preserve the coherence we consider to be such an important characteristic of this
handbook. We of course encourage a controlled collaboration process as 200 eyes
spot more mistakes than 4 eyes and 100 brains know more than 2 brains. Additi-
onally we are all restrained by the amount of time and energy we can invest into
this project so we will never be able to provide a handbook that is 100% complete
and finished. Therefore the handbook and all the information it contains is very
much provided „as is“ and you are free to do with it as long as you follow the rules
imposed by the Creative Commons‘ „Attribution alone (CC-BY)“ license that we are
using for this project.

On a sidenote: At the end of many chapters you will find a section called „to do“
which contains a list of things we still consider to be missing from the respective
chapter. On the one hand this will serve as sort of a roadmap for ourselves but on
the other hand we also actively encourage you to contribute missing pieces. Additio-
nally we have provided a sort of chapter-framework that will still be relatively empty
at the beginning. Again this is meant to help ourselves stay on course when writing
the handbook. But again it should also enable people to start filling up the gaps by
contributing (or simply suggesting) relevant documentation.

The best way to communicate with us (especially when you‘re interested in contri-
buting to the activity handbook) is by sending an e-mail to handbook@olpcaustria.
org. We very much value your feedback and will do our best to reply to your com-
ments, questions, suggestions and rants as soon as possible.

Last but not least you will always find the latest version of the Activity Handbook
over on http://www.olpcaustria.org/mediawiki/index.php/Activity_handbook.

Happy coding!

Christoph Derndorfer
Daniel Jahre

OLPC Austria (www.olpcaustria.org/), Vienna, May 2008

6

1.Introduction to Sugar

7

Chances are that if you are reading this handbook you have already spent consi-
derable time reading about the OLPC project in general and the X0 laptop and its
hard- and software in more detail. Apart from the predictable question about the
missing hand crank one of the first things everyone who sees an X0 notes is the user
interface. A user interface that is very different from what most of us are used to.
No start button. No clock on the lower right corner of the screen. No virtual desk-
tops. No list of running applications in a taskbar. No widgets. Very different indeed!

So, let us take a minute to get familiar with some of the characteristics of the Sugar
desktop. The first question here is: What exactly is Sugar? In a nutshell Sugar is a
GUI (short for „graphical user interface“), which is written in the Python program-
ming language and runs on top of the X Window System and the Matchbox Window
Manager (http://projects.o-hand.com/matchbox). A less technical description might
sound like this:

„Sugar is a unique approach to making computers more accessible to a broader
range of people.“

If you take a step back and think about the way we interact with computers then
many words will come to mind. But few people will think of the term „intuitive“. The
simple fact is that our interaction with computers is highly artificial and things only
really start to feel natural once you have spent a lot of time doing them a certain
way. Also the names, symbols and abstractions we use are often less than self-
explanatory. To give you a concrete example let us look at the way data is stored on
computers. The reason why we are dealing with „files“ and „folders“ is quite histo-
rical in that it shows for what environment a lot of the early software was written:
offices. It is not like this is the most complex thing to understand but at the same
time it also is not that easy to crasp it. Especially not for a 6 year-old child living in
the Peruvian Andes or Nigerian savanna. It must be possible to come up with an
easier and more universal approach when it comes to how people interact with com-
puters. This challenge sits at the very core of the OLPC human interface guidelines
which is a definite must-read for anyone interested in developing software for the
X0. In fact we would go as far as arguing that the article is a must-read for anyone
who is interested in the challenges and requirements that lie at the heart of making
computers more accessible, especially in a broader cultural context. Reading that
text one realizes that in terms of innovation Sugar is one of the best examples of

8

the „thinking outside the box“ approach that OLPC has taken throughout the whole
project.

One vitally important concept that we have to explain at this point is that in the X0
context there are not „applications“ but rather „activities“. The best explanation
for why this is important can be found in the human interface guidelines document
mentioned above:

„The laptop focuses children around „activities.“ This is more than a new naming
convention; it represents an intrinsic quality of the learning experience we hope the
children will have when using the laptop. Activities are distinct from applications in
their foci—collaboration and expression—and their implementation—journaling
and iteration.“

Now we are going to look at some of the Sugar elements in more detail. (Please
note that these screenshots were taken with software builds 605 and 624 so things
might look slightly different by the time you‘re reading this.)

What you are looking at on the screenshot above is the so-called „home view“ of

9

the Sugar desktop. The home view is best compared to the regular desktop that
most of us look at when we start our computers. In the center of the screen you find
the X0 icon in the child‘s custom colours. The ring around it contains icons for all the
activities which are currently running on the machine. Above that ring you can find
the network status indicator while below it you have the battery status indicator. On
the lower edge of screen you can see a scrollable list of all the activities which are
installed on the laptop. The icons on the upper edge represent the 4 different views
that are available in Sugar.

If you move across the X0 icon in the middle the
user‘s name is displayed. After a second of hovering
above the icon you are presented with a menu where
you can select to shutdown or reboot the machine.

Moving the cursor above an activity icon displays its
name before more options pop up after another se-
cond. The default choice is of course resume so if you
right-click on the icon then you will be taken directly
into the activity.

The same thing is true for the network status indica-
tor. Moving across it reveals the SSID name of the
network that you are currently connected to. After
another second you get more information such as
which channel is being used and of course also the
option to disconnect from the network. The cool thing

is that the icon also indicates the signal strength of the network connection, so if
the circle is full then the signal is very good.

The battery icon also works in a very similar fashion as it roughly indicates the
battery‘s current status and hovering over it reveals more details.

10

The toolbar on the bottom contains icons for all the currently installed activities plus
there are scrollbuttons to gain access to more activities. The icons are pretty self-
explanatory, from left to right the activities installed on this X0 are: chat, browse
(internet browser), write (text processor), record (audio, video and still recording),
paint, TamTamjam (one of three music / sound focused activities), Etoys (educational
programming language), Turtle Art (drawing application similar to logo), Pippy
(Python interpreter), calculate, measure and TamTamedit.

I am not going into details about what views are
and how they work (we‘re going to talk more about
that later). What is important to know at this point

is that Sugar basically offers 4 different perspectives of the computer and you can
always and easily switch between them.

What you see on the screenshot above is one of Sugar‘s most important features,
the so-called „Journal“. The Journal is a unique and innovative way of accessing
and storing data. Instead of ‚saving‘ and ‚opening‘ ‚files‘ the Journal allows you to

11

resume past activities. This again shows that the traditional seperation between
„programs“ and „files“ doesn‘t really exist in Sugar. I‘m not going to go into more
details at this point so please refer to the Journal entry on wiki.laptop.org (http://
wiki.laptop.org/go/OLPC_Human_Interface_Guidelines/The_Laptop_Experience/
The_Journal) for further information.

A concept that has however made it into Sugar is copy-paste. Once you select a
Journal entry you have the possibility to copy it to your clipboard (it then shows up
on the left side of Sugar‘s frame) or any removable storage device that you may
have attached (in my case either an SD card or a USB thumbdrive).

When it comes to removable media you can also easily access them within the
Journal. Unmounting these devices is also as easy as hoovering over it and waiting
for the „unmount“ option to appear.

As previously mentioned collaboration also sits at the heart of the OLPC project.
Therefore every actitivity should allow for children to easily collaborate. Collabora-
ting is as easy as going to the „activity“ tab within an activity and selecting „Share
with: My Neighborhood“. This will lead to the activity that you‘re sharing (in this

1�

example it‘s write) to show up on everyone else‘s Neighborhood View:

Clicking on that activity-icon in their neighborhood will connect other users to you
and within seconds you‘re able to collaborate on whatever activity you‘re using.

You can find some more information about how to use the OLPC XO laptop at
www.laptop.org/en/laptop/start/index.shtml

Now that you have an idea about some of the core elements of Sugar let‘s take the
next step and write our first activity, shall we?

13

2.Preparation

14

This chapter gives you an overview of what you need to do before you‘re able to
dive into activity-development. We‘re going to look into the different options you
have for development such as emulation, Live-CDs, sugar-jhbuild or on the actual XO
laptops. Get, set, ready, go..

Emulation

Currently emulating an XO is the recommended way for both demo‘ing and deve-
loping software running on the XO laptops. As always there are some limitations
related to emulation which can range from cosmetic details such a the wrong font-
size, to the lack of audio-support to core-issues such as the obvious lack of a mesh-
network and camera. Evaluating the speed of execution of an actual piece of code is
also hardly possible when you‘re using an emulation. Regardless of what emulation
you‘re using there are some common factors that you need to consider when setting
up your environment. Probably one of the most important ones is deciding how
much memory you‘re going to allow your emulation to use. The current OLPC XO-1
hardware comes with 256MB DDR-RAM so this is the recommended setting for a
relatively close simulation of the performance you can expect on the OLPC XO. In
general there are several different routes that you can take, below you can find a list
of your options depending on the operating system that you‘re running:

Linux
We assume that most developers running Linux will have some experience with
emulation so we‘re not going to go into details here. The best way to emulate Sugar
on a Linux machine is to use QEMU, alternatively you can also rely on solutions such
as VirtualBox or Vmware. Please see the Windows XP emulation section below for
more details.

Mac OS X
Due to the fact that we don‘t have access to a machine running Mac OS X we can‘t
comment on its capabilities when it comes to Sugar emulation. If you have any
experience with this then please contact us at handbook@olpcaustria.org.

One of our readers reported back that he is succesfully using VMware Fusion 1.0
(build 51348) coupled with the „Joyride“ OLPC vmx image. Based on his experience
with build 1447 (joyride-OLPC-1447.zip at http://dev.laptop.org/pub/virtualbox/) he

15

said:
Everything work fine except some difficulties with the splash screen on boot and
shutdown. It failed to show up. The sound don‘t work. I didn‘t have time to look at
it why but must be a simple question of vmware sound drivers. Anything else works
real fine. I was able to start an ssh server and connect to it without any problems.
This is how I do my dev. by the way.
So it‘s pretty much it. The important issue here is that I recommended to use VM-
ware for the XO Laptop only for dev and not for common use on vmware. It‘s still a
bit „shaky“ on different point but for dev. it works just fine.

Windows XP
At the time of writing (January 2008) there are three different ways to emulate an
XO environment on a Windows XP host-machine. In general emulation on Windows
XP works rather painlessly however still more information and feedback is required
about emulating Sugar under Windows Vista. While we have three sub-sections
below there are actually two main approaches to emulation, QEMU and VirtualBox/
VMware:

QEMU on Windows

Links http://www.h7.dion.ne.jp/~qemu-win/
http://wiki.laptop.org/go/QEMU

Description We ran into some issues with QEMU on Windows which we
haven‘t been able to solve yet. We will update this section once
we have more information.

VirtualBox

Links http://www.virtualbox.org/
http://dev.laptop.org/pub/virtualbox/
http://wiki.laptop.org/go/VirtualBox

16

Description VirtualBox is a popular emulator that runs under both Linux and
Windows. Unfortunately we experienced some issues when
testing VirtualBox (under Windows XP) with some of the pre-con-
verted images from dev.laptop.org/pub/virtualbox/. Build 649 or
Build 655 (Ship 2) for example would go into a constant reboot
cycle and never managed to succesfully load Sugar. Based on
this experience we would currently recommend using VMware
(see below). However we would appreciate any comments and
experiences about using VirtualBox for Sugar emulation. So please
e-mail us at handbook@olpcaustria.org and also post your findings
on http://wiki.laptop.org/go/VirtualBox.

VMware

Links http://www.vmware.com/
http://dev.laptop.org/pub/virtualbox/
http://wiki.laptop.org/go/VMWare

Description The easiest way to get started with an XO emulation is to down-
load a pre-converted image from dev.laptop.org/pub/virtualbox/
and get the latest version of the free VMware Player
(http://www.vmware.com/). After verifying that the download
worked flawlessly by comparing the md5-checksum with the
published md5 value you can unpack the .zip file and start the
virtual-machine by double-clicking on the *.vmx file.

With regards to the settings of the virtual-machine we‘re using the following
configuration:

Memory 256MB

Hard Disk olpc-6xx.vmdk

17

Ethernet Device status: Connect at power on (enabled)
Network connection: custom (VMnet0 (default Bridged)

USB Controller Automatically connect new USB devices to this virtual
machine when it has focus. (enabled)

Audio Device status: Connect at power on (enabled)
Connection: Use default host sound adapter (selected)

Virtual Processors Processors: Number of processors (One)

18

Live-CD

At the moment there are two different Live-CDs (three if you count a do-it-yourself
version) available for testing Sugar without having to install anything on your hard-
drive:

(1) LiveBackup Live-CD

Links http://dev.laptop.org/pub/livebackupcd/
ftp://rohrmoser-engineering.de/pub/XO-LiveCD/ (ftp-mirror)
http://skolelinux.de/XO-LiveCD/

Description This Live-CD was created with LiveBackup
(http://livebackup.sourceforge.net/) and at publication time the la-
test version (XO-LiveCD_080130.iso) relies on Sugar build 689, the-
refore being pretty much up to date (FYI: the current stable build is
656). While we had previously suggested using the Xubuntu Live-
CD (see below for details) we now recommend the LiveBackup
Live-CDs due to the fact that they‘re a much better and up-to-date
representation of the current development status. As a nice side
effect they also include many more activities than previous Live-
CDs. All in all it‘s an easy and convenient way to take a closer look
at Sugar. After inserting the Live-CD and re-booting your computer
the system comes up with an empty splash-screen where you have
to press „Enter“ to continue. The auto-configuration and boot-up
takes some time but afterwards it takes you straight to the screens
where you can enter your name and colour. This latest version of
the Live-CD solves issues that people previously experienced when
trying to use the sound in the TamTam activities and also the well-
known font issues. Some activites do not scale well on screens
that are smaller than the 1200 x 900 pixels that the XO uses but
this is more of a minor annoyance than anything else. Please also
see the XO-LiveCD_080130.pdf help document which contains a
short overview of the LiveBackup Live-CD.

19

(2) Xubuntu Live-CD

Links http://startx.ro/sugar/

Description This Live-CD is built around the popular Xubuntu distribution
(www.xubuntu.org) and while we had previously recommended
using it, it‘s now a bit outdated which is the reason why we
currently suggest using the LiveBackup Live-CD (see above for
details). After inserting the Live-CD and re-booting your computer
the system comes up with a simple splash-screen where you have
to select „Start or install Xubuntu“ to continue. Then you simply
wait for the desktop to come up, click on the „Applications“ button
in the top-left corner and select „Other“ -> „Sugar Emulator“.
Voil?Sugar starts and you can now type in your name, select a
colour and explore it! Alternatively you can also logon to your
Live-CD by clicking on the „Sessions“ button on the login screen
and selecting „2. Sugar“ from the list. However this didn‘t work
reliably at publication time. Other than that this approach has been
proven to work quite well and we‘re currently not aware of any
major issues regarding the Xubuntu Live-CD.

(3) Pilgrim Fedora Live-CD [DIY]

Links http://gregdek.livejournal.com/19843.html

Description RedHat‘s Greg DeKonigsberg started a kickstart file to create a
Live-CD image based on Fedora and built using the Fedora livecd-
creator. We haven‘t tested this path up to now but in case you
have please let us know how it went by e-mailing us at
handbook@olpcaustria.org and adding the information to
http://wiki.laptop.org/go/LiveCd.

�0

sugar-jhbuild

The sugar-jhbuild skript is a python script that is using for building and running
Sugar from source. It might have dependencies on your System that you have to
install before you can use sugar-jhbuild. You should check the laptop.org Wiki if you
have all the required packages on your Distribution or OS. The script is managed in a
git repository. You need to have git installed on your system. You can download the
script by typing
git-clone git://dev.laptop.org/sugar-jhbuild

Now you can change to the directory sugar-jhbuild by typing
cd sugar-jhbuild

Use git-pull to sync to the Repository. Now you are ready to use sugar-jhbuild. As a
first step tell jh-build to download all the required source packages to download by
using sugar-jhbuild‘s update command.
./sugar-jhbuild update

Use the build command to run the actual build.
./sugar-jhbuild build

sugar-jhbuild implicitly calls update on every run, so you can skip the update run
in the first place but it might be better to have the huge download in one rush
before start building. Sometimes some of sugar-jhbuild‘s builtin checks for required
packages will tell you about missing requirements even if they are installed. If you
are sure that you met all requirements you can switch that checks of by invoking the
command as
./sugar-jhbuild build -x

The script runs interactively by default. This means if an error occurs the script will
stop and asking you what to do next. If you don‘t like this behaviour because you
don‘t have the time to attend the progress of the build all day then use the --no-in-
teract switch to turn it off. Be aware that this might lead to a broken or incomplete
build.

If everything built fine you can now start Sugar by typing

�1

./sugar-jhbuild run

If you want to run multiple instance e.g. for testing collaboration you can set an
environment variable like this
SUGAR_PROFILE=2 ./sugar-jhbuild run

This would run two instances of Sugar at the same time.

Ubuntu packages

Given that the OLPX XO is built on a Fedora 7 base environment and uses many
standard libraries (see a full list of software components at
http://wiki.laptop.org/go/Software_components) it should theoretically be quite
easy to run Sugar under a variety of different Linux distributions. Unfortunately this
isn‘t the case at the moment even though we do expect to see a lot of progress in
that area throughout the first half of 2008. For now your best bet is to use Ubuntu
(see below for details) even though other distributions might work as well. Please
let us know (handbook@olpcaustria.org) if you have any experience with running
Sugar on other distributions so we can add it below!

Ubuntu (7.10 Gutsy Gibbon / 8.04 Hardy Heron)

Links http://www.ubuntu.com
http://wiki.laptop.org/go/Sugar_on_Ubuntu_Linux
https://edge.launchpad.net/~jani/+archive

Description If you‘re running Ubuntu (7.10 Gutsy Gibbon or 8.04 Hardy Heron)
you can also use deb packages to get Sugar (plus several ac-
tivities) directly on your system. Please follow the instructions
available at http://wiki.laptop.org/go/Sugar_on_Ubuntu_Linux
(please note that the wiki entry only mentions Gutsy support at
the moment) and https://edge.launchpad.net/~jani/+archive which
explain all the steps you need to take in order to get Sugar running
on your Ubuntu system. Even with Christoph‘s Linux experience
being somewhat limited he managed to get Sugar running on his
laptop in less than 10 minutes, it‘s really that easy!

��

XO Laptop

At the time of writing these lines (January 2008) OLPC is working on a new way for
people to request post-mass-production developer machines. Currently the number
of laptops available to developers is still somewhat limited (this is subject to change
though as more units are produced) but interested developers can directly apply at
OLPC for an XO-1.

Please keep a close eye on
http://wiki.laptop.org/go/Developers_Program#How_to_apply_for_an_XO and
http://wiki.laptop.org/go/Contributors as more information becomes available.

Chris from OLPC Austria has written up a nice page
on how to customize and configure an XO:
www.olpcaustria.org/mediawiki/index.php/Xo_setup_user_guide

General notes

Regardless of which of these methods you‘re using to develop activities there are a
couple of things which will make your life easier:

�rm�-rf�/home/olpc/Activities/YourActivity/:
This command will remove the selected activity from the XO. After restar-
ting Sugar (CTRL + ALT + Erase) the icon will also be gone from the frame.
Very useful for situations where the activity you have just installed doesn‘t
work.

 Pippy (http://wiki.laptop.org/go/Pippy) provides code samples and a fully
interactive interpreter making it a good choice for your first coding steps
in Sugar.

 Develop (http://wiki.laptop.org/go/Develop) is a more full featured Python
IDE which comes with a tree view of files, a tabbed editor, a basic version
control system and other useful features. However as of May 2008 the ac-
tivity is still in a very early development stage and bugs can cause serious
issues such as the total loss of Journal contents. Use at your own risk, you
have been warned!

 When it comes to designing an icon for your activity we‘d recommend

•

•

•

•

�3

reading the following two entries on wiki.laptop.org as they will definitely
save you some headaches: Making Sugar Icons (http://wiki.laptop.org/go/
Making_Sugar_Icons) and Sugar-iconify (http://wiki.laptop.org/go/Sugar-
iconify)

Links

 OLPC Developer‘s Program
 http://wiki.laptop.org/go/Developers_Program#How_to_apply_for_an_XO

 OLPC Contributor‘s Program
http://wiki.laptop.org/go/Contributors

 QEMU
http://fabrice.bellard.free.fr/qemu/

 Virtual Box
http://www.virtualbox.org/

 VMware
http://www.vmware.com/

 XO Setup User Guide
http://www.olpcaustria.org/mediawiki/index.php/Xo_setup_user_guide

•

•

•

•

•

•

�4

3.Sugar Basics

�5

This chapter covers the basics of creating a software bundle for the XO, including a
short code sample („hello world“, what else?) to show you all the steps you need to
take in order to write an activity.

First of all it‘s important to explain the concept behind these activity bundles.
Here‘s what the description from the Activity Bundles
(http://wiki.laptop.org/go/Activity_Bundles) entry on wiki.laptop.org has to say:

Every activity in the Sugar environment is packaged into a self-contained „bundle“.
The bundle contains all the resources and executable code (other than system-provi-
ded base libraries) which the activity needs to execute. Any resources or executable
code that is not provided by the base system must be packaged within the bundle.

One of the main reasons why these self-contained bundles play such a vital role
within the XO ecosystem is that children should easily be able to transfer activities
they don‘t have yet to their own laptops.

Activities are meant to be shared between children. If a child doesn‘t have the
activity, it is automatically transfered to the child when he or she joins the shared
activity. Packaging activities in self-contained bundles allows easy sharing, installa-
tion, removal, and backup.

The package layout

Like most modern package formats the .xo package requires a specific directory
layout and files that follow a certain naming scheme. The basic directory layout for
our sample activity is shown below:

MyActivity.activity/

MyActivity.activity/MANIFEST

MyActivity.activity/MyActivity.py

MyActivity.activity/setup.py

MyActivity.activity/activity

MyActivity.activity/activity/activity.info

MyActivity.activity/activity/activity-myactivity.svg

�6

MyActivity.activity/lib (additional libraries required

by the activity) [optional]

MyActivity.activity/locale (additional libraries

required for localization) [optional]

The package files in more detail

MANIFEST
This file contains a list of the files which are part of the Activity Bundle. (Make sure
that you don‘t leave any blank lines at the end of the file!)
In our example the MANIFEST looks like this:

MyActivity.activity/HelloWorldActivity.py

MyActivity.activity/setup.py

MyActivity.activity/activity/activity.info

MyActivity.activity/activity/activity-helloworld.svg

HelloWorldActivity.py
This file contains the code of our activity.

from sugar.activity import activity

import logging

import sys, os

import gtk

class HelloWorldActivity(activity.Activity):

 def hello(self, widget, data=None):

 logging.info('Hello World')

 def __init__(self, handle):

 print "running activity init", handle

 activity.Activity.__init__(self, handle)

 print "activity running"

 self.set_title('Hello World')

�7

 # Creates the Toolbox. It contains the

 # Activity Toolbar, which is the bar that appears

 # on every Sugar window and contains essential

 # functionalities, such as the 'Collaborate'

 # and 'Close' buttons.

 toolbox = activity.ActivityToolbox(self)

 self.set_toolbox(toolbox)

 toolbox.show()

 # Creates a new button

 # with the label "Hello World".

 self.button = gtk.Button("Hello World")

 # When the button receives the "clicked"

 # signal, it will call the function hello()

 # passing it None as its argument. The hello()

 # function is defined above.

 self.button.connect("clicked", self.hello, None)

 # Set the button to be our canvas. The canvas

 # is the main section of every Sugar Window.

 # It fills all the area below the toolbox.

 self.set_canvas(self.button)

 # The final step is to display this newly

 # created widget.

 self.button.show()

 print "AT END OF THE CLASS"

setup.py
from sugar.activity import bundlebuilder

if __name__ == "__main__": ##checks whether the class is

started as main; not absolutely necessary

 bundlebuilder.start('HelloWorld')

�8

activity.info
The activity.info file contains all important metadata for the package similar to a
.spec file in a rpm package. The fileformat is kept simple, it looks like the .ini files
from dos and Windows and are also specified on freedesktop.org

[Activity]

name = HelloWorld

service_name = com.olpcaustria.HelloWorldActivity

activity_version = 1

host_version = 1

bundle_id = org.olpcaustria.HelloWorldActivity

icon = activity-helloworld

class = HelloWorldActivity.HelloWorldActivity

mime_types = application/pdf;image/tiff

show_launcher = yes

Here‘s a more detailed break-down of the file:

[Activity]: The activity.info file must always start with „[Activity]“, no other
tag is allowed in the first line of the file!
name: The name of the activity - unless defined with an additional language code
in []-brackets is assumed to be „en_US“.
activity_version: A single positive integer, larger values are considered
to be „newer“ versions.
host_version: Again a single positive integer, which specifies the version
of the Sugar environment which the activity is compatible with. (While writing this
book no higher versions than 1 for Sugar are available.)
bundle_id: Activity bundle identifier which is also used as the default service
type when sharing the activity.
icon: Specifies the name of the activity‘s icon which is expected to be in the base
directory and has an .svg extension.
class: Defines which class to start upon the activity initialization. (You can either
use the „class“ or the „exec“ line below to define that class.)
mime_types: Specifies which mime types (separated by semi colons) are sup-
ported by the activity, is used when downloading files from the web or for offering
the activity when resuming something from the Journal. Don‘t use it unless your

�9

activity really needs and supports these file-types.
show_launcher: (optional) If this tag is missing or set to „yes“ the activity‘s
icon will be shown in Sugar‘s launcher panel.

icon.svg
The activity icon has to be placed in the /activity sub-directory and should use the
.SVG format (http://www.w3.org/Graphics/SVG/ - SVG is a a XML based language
for two-dimensional vector graphics). Please take a look at the Sugar Icon Format
(http://wiki.laptop.org/go/Sugar_Icon_Format) and the Icon section of the Human
Interface Guidelines (http://wiki.laptop.org/go/OLPC_Human_Interface_Guidelines/
The_Sugar_Interface/Icons) for more information about icon design.

Here‘s a sample icon produced by Daniel Jahre‘s activity-bundle-generator

<!--

<?xml version="1.0" encoding=“UTF-8"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd" [

 <!ENTITY fill_color "#FFFFFF">

 <!ENTITY stroke_color "#000000">

]>

<svg xmlns=Chttp://www.w3.org/2000/svg" width="50"

height="50">

 <rect x="1" y="1" width="48" height="48"

 style="fill:&fill_color;;stroke:&stroke_color;;stroke-

width:2"/>

</svg>-->

xo bundle

All that‘s left to do at this point is to create the .xo bundle package. You can easily
accomplish this by using a compression tool of your choice to make a zip-archive.
Then you simply rename the .zip file to HelloWorld.xo and voila, you‘ve just finished
your first activity!

30

 Localization issues

In the locale directory are subdirectories for each locale that the activity is localized
for. The localization is done in files called activity.linfo. How localization is handled
will be described further down the road.

<!--

<section>

<title>TO-DO</title>

<para>

- add information about localization (maybe in another

chapter or section)

- add relevant links

- add Hello World .xo package

</para>

</section>

-->

31

4.Sugar User Interface

3�

In this chapter we‘re going to explore some of the basics related to designing the
interface of activities. As previously mentioned in Chapter 2 Sugar is quite a unique
approach when it comes to user interfaces. The goal of project necessitates a
radical rethinking in terms of how software is designed. So now we‘ll look at some
of the more technical details involved in building toolbars for the activity interfaces.
Please note that this chapter is not meant to be a GTK+ or PyGTK tutorial as this
would go way beyond the scope of this handbook. Instead we‘re going to focus on
the Sugar-specific toolbars. However you will find some pointers to more general
GTK+ or PyGTK tutorials and resources in the Link section at the end of this chapter.

Toolbox / Toolbars

The first thing you notice when you start an activity is the toolbox at the top of the
screen. In its standard form it has at least an „Activity“ toolbar which contains the
following 4 elements:

a label with the name of the activity

 a „Share with“ combo-box that allows you to share the activity on the
network

a „keep“ button (more on that later)

a „stop“ button that closes the activity

Only 3 short lines of code are necessary to create and display that toolbar:
toolbox = activity.ActivityToolbox(self)

self.set_toolbox(toolbox)

toolbox.show()

The standard toolbar (from „Write“-activity).

While collaboration sits at the very heart of the „activity“-concept there will be
cases where an activity is just meant to be used by a single person. For the most
part this is true with service-orientated software and looking at the current set of
preinstalled activities there are some examples of this such as „Terminal“ or „Log
Viewer“. There will also be cases where the“keep“ functionality

•

•

•

•

33

(http://wiki.laptop.org/go/OLPC_Human_Interface_Guidelines/The_Laptop_Ex-
perience/The_Journal#The_Notion_of_.22Keeping.22) (based on the Journal this
basically replaces the traditional „save“ and „load“ concept) isn‘t needed.

We‘re going to take a closer look at the Journal in the next chapter.

As mentioned above the standard activity toolbar comes with both the „Share with“
combo-box and the „keep“-button enabled. For situations where these elements
aren‘t needed we can simply hide them by setting their „visible“ property to „False“.
Below you can find a code-snippet that does exactly that:
Loads the activity toolbar

activity_toolbar = toolbox.get_activity_toolbar()

Hides the „Share with:“ combo-box

activity_toolbar.share.props.visible = False

Hides the keep button

activity_toolbar.keep.props.visible = False

The resulting toolbar will look like this:

The toolbar without the collaboration and keep buttons (from „Terminal“-activity).

The following sample is a code snippet (http://wiki.laptop.org/go/Sugar_Code_
Snippets#Toolbar) that illustrates how to insert a custom toolbar (in this case a
‚help‘ toolbar) with a single button that is connected to the self.help_button_
pressed method.

from sugar.graphics.toolbutton import ToolButton

from sugar.activity import activity

...

class MyActivity(activity.Activity):

...

 mytoolbox = gtk.Toolbar()

 helpbut = ToolButton(‚help‘) #Stock help icon

 helpbut.set_tooltip(_(„Get help“))

34

 helpbut.connect(‚clicked‘, self.help_button_pressed)

 mytoolbox.insert(helpbut, -1)

 helpbut.show()

 mytoolbox.show()

 toolbox = activity.ActivityToolbox(self)

 toolbox.add_toolbar(„mytoolbar“,mytoolbox)

 self.set_toolbox(toolbox)

 toolbox.show()

Customized toolbar (from „Write“-activity).

Links

 Human Interface Guidelines
http://wiki.laptop.org/go/OLPC_Human_Interface_Guidelines

 Software Components
http://wiki.laptop.org/go/Software_components

 GTK+ Homepage
http://www.gtk.org/

 PyGTK Homepage
http://www.pygtk.org/

 PyGTK 2.0 Tutorial
http://www.moeraki.com/pygtktutorial/pygtk2tutorial/index.html

•

•

•

•

•

35

5. The Sugar Services
for Datastore
and Collaboration

36

This chapter covers the D-Bus based services datastore and collaboration. The
datastore is used for managing actvities and its data by the journal and collaborati-
on enables the concurrent use of Activities over the network. Example code in this
chapter is in C but the python calls are quite similar.

D-Bus - the heart of the Sugar services

D-Bus is a messaging API that is widely used in Linux based Systems e.g. for propa-
gating hardware events like plugged in external drives. It is designed as a Server-
Client architecture. It is not neccessary to know all the details of the D-Bus system
because the Sugar API wraps around it. There are several wrappers called services.

The basic service is called the Sugar shell. The Sugar shell provides a clipboard, a
registry of all installed activities and an object type registry to map mimetypes and
activities.

The Journal keeps track of the user‘s actions on the laptop.

The Activity Life Cycle

The life cycle of an Activity splits up into three parts: Startup, Operation and Shut-
down. Each phases uses D-Bus services to work with the Sugar environment.

Startup
On startup the Activity creates D-Bus services that Sugar can an activity with its
window. If an object id is passed via command line the object is loaded from the da-
tastore. If no object id is given, a new datastore object will be created. The Activity
asks the Presence Service if the activity is shared and joins it in that case. On Star-
tup some important Environment Variables are set. SUGAR_ACTIVITY_ROOT points
to a directory where the activity is allowed to write into. Activities are encapsulated
that way that they are not allowed to write anywhere else. SUGAR_BUNDLE_PATH
points to the directory where the Activity bundle is installed too. So you can read
images and other needed data that is bundles with that Activity from there.

Operation
During operation the Activity uses the Presence Service to share itself and the data-

37

store to update its status so that the Activity can be continued in that state in case
of a shutdow. Of course it can uses all other services as well during operation.

Shutdown
On Shutdown the Activity saves its state to the datastore and quits.

The datastore

The datastore is central storage service on each laptop. Its content will be managed
by the Journal. It is neccessary for an Activity to write its state to the datastore so
that the Activity can be managed by the Journal.

Metadata
The Metadata is a set of properties that is stored along with the actual data into the
datastore. The following list shows some of these properties.

‚activity‘: ‚my.organization.MyActivity‘

bundle id

‚activity_id‘: ‚6f7f3acac-

ca87886332f50bdd522d805f0abbf1f‘

‚title‘: ‚My new project‘

‚title_set_by_user‘: ‚0‘

 # ‚1‘ if not default title

‚keep‘: ‚0‘

 # ‚1‘ if marked as „favorite“ (star)

‚ctime‘: ‚1972-05-12T18:41:08‘

 # created

‚mtime‘: ‚2007-06-16T03:42:33‘

 # modified

‚timestamp‘: 1192715145

 # modified, in seconds since the UNIX epoch

‚preview‘: ByteArray(png file data, 300x225 px)

‚icon-color‘: ‚#ff0000,#ffff00‘

 # owner buddy or shared activity color

‚mime_type‘: ‚application/x-my-activity‘

‚share-scope‘:

38

 # if shared

‚buddies‘: ‚{}‘

 # buddies in a shared activity as JSON

‚summary:text‘: ‚text I want to be indexed‘

properties with key ending in „:text“ will be searched

in fulltext search

The API for maintaining datastore objects is quite simple. To create a datastore
object call the create function. It creates a datastore object for a file. The parameter
properties is a dictionary containing the metadata properties.
object_id = datastore.create(properties, filename)

If filename is not empty, the file will be copied to the datastore. The activity
should delete the file once the call completes. The returned id will be a string like
‚4543af91-7be9-404e-b2f1-3e27cb15a15d‘. To update the information, use the
update call like this.
datastore.update(object_id, properties, filename)

Like for the create call the file will be deleted after the call. The supply of a filename
is optional for this call. It is possible to retrieve the properties and the file from the
datastore. To retrieve the properties call get_properties.
properties = datastore.get_properties(object_id)

If you want to retrieve the file use the get_filename call. You should remove the file
after you used it, a copy will be still there in the datastore.
filename = datastore.get_filename(object_id)

It is also possible to query the datastore with the find call. You can do an unstruc-
tured query by passing a string to find which means that the string is used to search
in all properties. A second possibility is to do a structured query by passing a
dictionary for the properties you are looking for to find. In both cases the call looks
like this.
(results,count) = datastore.find(query)

Here are examples for some structured queries.

39

‚title‘ = ‚First Project‘

‚mime_type‘ = [‚image/png‘, ‚image/jpeg‘]

‚mtime‘ = {‚start‘ = ‚2007-07-01T00:00:00‘, ‚end‘ =

‚2007-08-01T00:00:00‘}

There are additional parameters to adjust your query to your needs.
‚query‘: fulltext search term

‚order_by‘: key (or array of keys) to order results by,

to reverse order use ‚-key‘

‚limit‘, ‚offset‘: return only limit results starting at

offset

‚mountpoints‘: array of mountpoint ids to search (or all

if not specified)

‚include_files‘: if true, generate files as if get_filena-

me() had been called for each item. In results, a pro-

perty ‚filename‘ will be added.

Progressbar
Now we want to use the datastore to show a little progressbar for jobs that take a
little bit longer. The progressbar shows up in the Journal. The Browse Activity uses
this feature e.g. The datastore does not support to save files incrementally so wen
need to store it in filesystem first and then adding it to the datastore. The trick is to
create a metadata for the progressbar and update it accordingly. The user can cancel
the operation so the key gets deleted. We have to take care to that.

meta = ... # regular

metadata

meta[„progress“] = 0

id = datastore.create(meta, „“) # create

with progress bar

while (done() > 100) {

 if (got_signal(datastore, „Deleted“, id))

 return user_cancelled();

 write_to(tmpfile)

 meta[‚progress‘] = done()

 datastore.update(id, meta, „“) # update

40

progress bar

}

meta.deleteKey(„progress“)

datastore.update(id, meta, tmpfile.name) # check-in

file, remove progress bar

Mountpoints
Devices are represented as mountpoints in the datastore. If no mount point is speci-
fied the datastore is used. You can get the mountpoints by using the following call.
mounts = datastore.mounts()

That call returns at least three paramters in a dictionary.

‚id‘: the id used to refer explicitly to the mount point

‚title‘: Human readable identifier for the mountpoint

‚uri‘: The uri which triggered the mount

Mount points can be specified when creating an object (using a ‚mountpoint‘ key
and id value in the properties), and when querying the datastore (by adding a
‚mountpoints‘ query option). Large files to be stored on an external device should be
placed at the uri of the mount point. External Devices are mounted by the Journal
and appear in /media.

File access
All writing to the file system is restricted to subdirectories of the path given in the
SUGAR_ACTIVITY_ROOT environment variable. This directory has three subdirecto-
ries with different policies.

$SUGAR_ACTIVITY_ROOT/data/ is used similar to a $HOME directory, for persistent
activity data such as configuration files. Make sure files in there are group readable
and writable. The directory itself is group-writable. Files stored here will survive
reboots and OS upgrades.

$SUGAR_ACTIVITY_ROOT/tmp/ is used similar to a /tmp directory, being backed by
RAM. It may be as small as 1 MB. This directory is deleted when the activity exits
(specifically, as soon as all children of the activity‘s first process die). This directory

•

•

•

41

is only accessible to the activity and its children; not even to sugar.

$SUGAR_ACTIVITY_ROOT/instance/ is used similar to a /var/tmp directory, being
backed by flash rather than by RAM. It is unique per instance. It is used for transfer
to and from the datastore (see keeping and resuming). This directory is deleted
when the activity exits (specifically, as soon as all children of the activity‘s first
process die)

Collaboration

The Collaboration features are provided by the Presence Service which is also a
D-Bus service. There are are several ways of initiating a collaboration. You can start
it by sharing your Avtivity over the network or by inviting a buddy or by joining an Ac-
tivity that is shared by somebody else. After initiating you can manage your buddies
and using so called tubes to communicate with other instances of your Activity over
the network.

Sharing
To share an Activity use the following call.
activity = PS.ShareActivity(activity_id, bundle_id,

name, properties)

The bundle id is used for the icon and to launch the same activity when someone
joins it. The name will be shown in the mesh view and should generally be the same
as the title of the datastore object (see above). The properties argument is not used
currently and should be an empty dictionary.

Note that sharing will be private (invitation-only) by default, that is, the icon will not
be visible in the mesh. To share publicly, set the ‚private‘ property to False:

activity.SetProperties({‚private‘: False})

Inviting
If you don‘t want to share your Activity publicly you can invite your buddies to join
you. This is a more private way of collaboration. To invite a buddy call:

4�

buddy = PS.GetBuddyByPublicKey(buddy_key)

activity.Invite(buddy, message)

Joining
When launching, the Presence Service must be consulted to see if this instance was
shared by someone else, meaning it was launched by the user is trying to join it:
activity = PS.GetActivityById(activity_id)

This yields an error if this instance (identified by its activity id) was not shared,
in which case a regular non-shared startup should be performed. Otherwise, the
activity object held by the PS is returned, and this activity instance needs to join:
activity.Join()

It should continue by establishing a communication channel with the originating
instance (see below).

Leaving
To leave a shared activity (e.g. because it is closing) you need to inform the Presence
Service by using this call.
activity.Leave()

Buddies
The activity object created by either sharing the current activity or joining an existing
activity is used to establish means of communication between these instances. The
joined XOs can be accessed to start communicating with them.
buddies = activity.GetJoinedBuddies()

To get notified of buddies joining or leaving, listen to these signals.
buddies = activity.GetJoinedBuddies()

Tubes
„Tubes“ are the transport medium of choice on the XO, provided by the Telepathy
framework. There are „D-Bus Tubes“ allowing remote D-Bus calls, and „Stream
Tubes“ which forward sockets (similar to ssh forwarding). Tubes are collected in
a „Channel“, and channels are associated with a „room“, one per shared activity
instance.

43

First, get the Telepathy connection from the shared activity object
(tp_service, tp_connection, channels) = activity.Get-

Channels()

Where tp_service and tp_connection is the D-Bus service name and object path for
the Telepathy connection. An array of channels pre-created in the activity room is
returned, too. There is at least a text chat and a tubes channel at
Service: (tp_service)

Object path: (channels[i])

Interface: ‚org.freedesktop.Telepathy.Channel‘

Use GetChannelType() to tell the channels apart
if (channel.GetChannelType() == ‚org.freedesktop.Telepa-

thy.Channel.Type.Tubes‘)

 ...

elseif (channel.GetChannelType() == ‚org.freedesktop.

Telepathy.Channel.Type.Text‘)

 ...

Stream Tubes
A stream tube forwards a socket to a remote host (similar to ssh forwarding, but not
encrypted). The activity can set up a listening socket by whatever means and then
create a tube to forward it.

tube_id = channel.OfferStreamTube(# sa{sv}uvuv -> u

 ‚my-activity-xttp‘, # unique service

name

 {}, # dict of params

 2, # socket type

(0=Unix, 2=IPv4, 3=IPv6)

 (‚127.0.0.1‘, 12345), # socket address

(depends on type)

 0, 0) # access control

and params

You can forward Unix, IPv4, or IPv6 sockets. Access control is restricted to localhost

44

by default. New tubes are announced by a signal.
NewTube (u: tube_id, u: initiator, u: type, s: service,

a{sv}: parameters, u: state)

On the remote host you can connect to that tube.

address = channel.AcceptStreamTube(# uuuv -> v

 tube_id,

 2, # socket type to

return (0=Unix, 2=IPv4, 3=IPv6)

 0, 0) # access control

and params

Which returns an address struct of the specified type, e.g., (‚127.0.0.1‘, 45679). Then
just connect a socket to that address and you are ready to share data.

45

6.The Journal
I

46

This chapter covers one of the most important features of Sugar: the Journal. The
Journal is best described in the accompanying entry (wiki.laptop.org/go/Journal)
on wiki.laptop.org: „The Journal activity is an automated diary of everything a child
does with his or her laptop.“ The Journal is very closely tied to the activity-concept
that we briefly discussed in Chapter #1. Basically what it boils down to is that
instead of working with files - saving and loading documents - the Journal is used to
„resume“ previously started activities.

As an example project we are going to write a two very simple programs that allow
you to store and retrieve dummy entries in the Journal. In order to focus on the
Journal functionality here we decided to skip writing a complete activity and so we
developed a simple python script that can be run in either the Terminal activity, the
shell or within Pippy.

47

Storing Journal entries

You only need 3 lines of code in order to create a dummy Journal entry:

from sugar.datastore import datastore

journal_object = datastore.create()

datastore.write(journal_object)

Running this code will result in two things: A warning saying that „DSObject was
deleted without cleaning up first. Please call DSObject.destroy() before disposing it.“
(more on this in a minute) and an entry in your Journal that should look like this one.

Empty Journal entry

In order to really use the Journal you will want to use a couple of additional lines of
code:

�journal_object.metadata[‚title‘]�=�‚Journal�
dummy‘ Journal items support a variety of meta data such as ‚title‘,
‚mime_type‘ (so the Journal offers appropiate activities for resuming the
entry), ‚tags‘, ‚keep‘ (marking it as a favorite) and ‚preview‘ (please refer
to <ulink url=“http://wiki.laptop.org/go/Low-level_Activity_API#Meta_
Data“>this list</ulink> for a complete overview). This meta data can be
accessed with DSObject.metadata[‚meta data type‘]. Note: As of May
13 there still seems to be a bug (<ulink url=“http://dev.laptop.org/ti-
cket/4662“>#4662</ulink>) which results in the loss of some meta data
between reboots.

�journal_object.file_path�=�‚/yourDirectory/
yourFile.extension‘ When you want to store a file (e.g. an
image or a text that you‘re importing) in the Journal then you use DSOb-
ject.file_path to access the file.

�journal_object.destroy() Executing DSObject.destroy() after
you have written an object to the datastore will safely disposes of the
datastore object and get rid of that error message mentioned above.

•

•

•

48

Based on these buildings blocks we come up with the following little Python script:

from sugar.datastore import datastore

title = raw_input(„Enter the name of your dummy item: „)

mime = raw_input(„Enter the item‘s mime_type (e.g.

image/png, text/plain, text/html): „)

favorite = raw_input(„Do you want to make this item a

favorite (‚0‘ for no, ‚1‘ for yes): „)

tags = raw_input(„Enter any tags you want this item to

be associated with: „)

journal_object = datastore.create()

journal_object.metadata[‚title‘] = title

journal_object.metadata[‚mime_type‘] = mime

journal_object.metadata[‚keep‘] = favorite

journal_object.metadata[‚tags‘] = ‚Dummy ‚ + tags

journal_object.metadata[‚icon-color‘] =

‚#AFD600,#5B615C‘ #We‘re using the colors from www.olpc.

at here.

datastore.write(journal_object)

journal_object.destroy()

print „Well done. You‘ve just created your first dummy

item in the Journal.“

Dummy Journal entry

Another simple example that one could write is to take a vanilla .jpg or .png photo
and add it to the Journal.

49

Retrieving Journal entries

Obviously the next step is finding out how to retrieve data from Journal entries.
When writing this handbook we often use the screenshot function on the XO (alt +
1) and then manually have to copy each of them to an attached USB thumbdrive. For
this chapter we decided to write a simple script that looks for all the screenshots
in the Journal and copies them into the /tmp/ directory so we can easily copy them
over to a thumbdrive.

Screenshot search in the Journal

The key method for retrieving data from the Journal looks like this:
(results,count) = datastore.find(query)

Per the documentation (http://wiki.laptop.org/go/Low-level_Activity_API#Querying)
a query ‚returns the results as array of properties and a count of matching items‘.
There are several possibilities how this query can be constructed, in its simplest
form a full-text search is used:
datastore.find(dict(query=“YourSearchString“))

Other possible queries are based on the datastore object‘s meta data such as ‚title‘
or ‚mime_type‘ (such as in the example below). A query can also be adjusted by
ordering results or limiting the query to certain mountpoints. When it comes to the
mountpoints the main datastore is used as a default which means that both the
internal Flash memory on the XO and all connected storage devices (such as USB
thumbdrives and SD cards) will be included in a search. Please refer to http://wiki.

50

laptop.org/go/Low-level_Activity_API#Querying for more details.

For our example we‘re building the query to look for png files with the titel „Screens-
hot“. The matching Journal items will then be exported to the /tmp/ directory as
.png files.

from sugar.datastore import datastore

import sys

import shutil

(results,count) = datastore.find(dict(title=‘Screenshot‘,

mime_type=‘image/png‘))

i = 0

for f in results:

 i = i + 1

 src = f.get_file_path()

 dst = ‚/tmp/screenshot%i‘ % (i,) + ‚.png‘

 dict = f.get_metadata().get_dictionary()

 if dict[„mime_type“] == „image/png“:

 object_id = f.object_id

 shutil.copyfile(src, dst)

 f.destroy()

Extracted screenshots

Journal UI

Currently not too many activities integrate the Journal into their UI with the notable
exception of browse (http://wiki.laptop.org/go/Browse). Browse brings up an
overlayed Journal view whenever a user clicks on a file-selector button on a Web
site. http://wiki.laptop.org/go/Low-level_Activity_API#Journal_UI contains more
information about how this feature can be utilized.

51

Links

http:// wiki.laptop.org/go/Journal

http:// wiki.laptop.org/go/Journal_Activity

http:// wiki.laptop.org/go/Low-level_Activity_API#Datastore

•

•

•

•

5�

7. Using the
XO Input Devices

53

This chapter focuses on using the various input devices that the XO provides such as
the camera, the microphone and the game buttons. We‘ve decided to develop two
sample activities which make use of these input devices: (a) a simple StopMotion
activity to illustrate the use of the camera and (b) a GameButton activity that allows
you to quickly test the game buttons. With regards to the microphone we didn‘t
come up with any reasonable use-cases which aren‘t covered by existing activities.
We will therefore update the respective section in the future once we do come up
with a useful activity.

In case anyone is looking for an idea for an activity that could make use of both the
camera and the game buttons then we would suggest a photo album that offers
several features based on these inputs: photos can be taken with the camera (and in
case you‘re bored you can also include those standard filters such as the ones found
on all Apple MacBooks), and the game buttons can be used in the presentation-
mode (aka e-book mode) to provide a simple picture-viewer.

Camera

Especially when it comes to the camera there are many interesting efforts under
way to use it in a variety of scenarios. One example is the headtracker
(http://www.olpcaustria.org/mediawiki/index.php/Headtracker) which is an accessi-
bility project that will allow for complete control over a laptop without using a mou-
se and keyboard. Another interesting approach is the Vision Processing (http://code.
google.com/soc/2008/olpc/appinfo.html?csaid=9FEE89D188E4CE8A) project (part of
Google Summer of Code 2008) which Nirav Patel is working on with the support of
Chris Hager. Stay tuned for updates on these efforts on the various mailing-lists and
OLPC related Web sites.

So while the record (http://wiki.laptop.org/go/Record) activity covers the more
obvious use-cases when it comes to using the camera (capturing photos, videos and
sharing them with other users) there are many other activities and scenarios which
will be developed around the XO‘s camera functionality.

StopMotion Activity

To demonstrate how the camera can be used we developed a simple StopMotion ac-

54

tivity that allows you to specify two parameters: (a) the delay between subsequent
photos and (b) the number of photos you want to take. This is a relatively primitive
activity but it can be relatively easily extended and adapted for other purposes.

StopMotion activity

We‘re going to start off with a closer look at the key command for using the camera
which you can try out by entering it in the Terminal activity or the shell:
gst-launch-0.10 v4l2src ! ffmpegcolorspace ! jpegenc !

filesink location=/tmp/photo.jpg

In general the way it works is the following: The Omnivision OV7670
(http://www.ovt.com/products/part_detail.asp?id=53) used in the OLPC XO is a vi-
deo4linux (http://linuxtv.org/v4lwiki/index.php/Main_Page) device which dumps its
output into GStreamer (http://www.gstreamer.net/). GStreamer is basically a library
which consists of a pipeline that takes the original multimedia input and converts
it into files or direct screen-output. There are several keywords here which we‘ll be
looking at in more detail:

55

 v4l2src: As mentioned above the XO‘s camera is a regular video4linux
device which can be accessed via GStreamer‘s v4l2src source.

 ffmpegcolorspace: Converts the raw data from the camera into a color
space (http://en.wikipedia.org/wiki/Color_space) that can be processed by
the rest of the pipeline.

 jpegenc: This plugin takes the input from the previous step in the pipeline
and converts the data into the JPEG file format. As an alternative you
could also use ‚pngenc‘ to receive PNG files.

 filesink location=/tmp/photo.jpg: ‚filesink‘ writes the stream from the
pipeline to a file which is defined in the location argument

When you use this functionality in Python the code will look like this:
pipeline = gst.parse_launch(‚v4l2src ! ffmpegcolorspace

! jpegenc ! filesink location=/tmp/photo.jpg‘)

Additionally you need to need to set the pipeline to gst.STATE_PLAYING so it
processes the input. We give it one second to finish its work before we set it back to
gst.STATE_NULL.
pipeline.set_state(gst.STATE_PLAYING)

time.sleep(1)

pipeline.set_state(gst.STATE_NULL)

The next step is to actually save the temporary file in the datastore so the photo is
accessible via the Journal (which we covered in the previous chapter). We want to
give the user the ability to choose his own title for the project which will be used as
the title for all related Journal entries. In order for the Journal to offer the correct
choice of activities to view the photos it is important to include the ‚mime_type‘
which in our case is ‚image/jpeg‘ but could also be ‚image/png‘ when using
GStreamer‘s ‚pngenc‘ option. Additionally the entries will be tagged with ‚Stop
motion‘ so it‘s easy to find all photos created with the activity.

journal_object = datastore.create()

journal_object.metadata[‚title‘] = title + ‚: ‚+ str(i)

+ ‚/‘ + str(number)

journal_object.metadata[‚mime_type‘] = ‚image/jpeg‘

journal_object.metadata[‚tags‘] = ‚Stop motion‘

•

•

•

•

56

#journal_object.metadata[‚icon-color‘] = ‚icon-color‘

journal_object.file_path = ‚/tmp/photo%i‘ % (i,) +

‚.jpg‘

datastore.write(journal_object)

journal_object.destroy()

The complete Python scripts then looks something like this:
import gst, sys, time

from random import *

from sugar.datastore import datastore

title = raw_input(„Enter the title of your project: „)

delay = input(„Enter the delay between each photo: „)

number = input(„Enter the number of photos you want to

take: „)

i=1

while (i!=number):

 photocmd = ‚v4l2src ! ffmpegcolorspace ! jpegenc !

filesink location=/tmp/photo%i‘ % (i,) + ‚.jpg‘

 print i

 # take photo

 pipeline = gst.parse_launch (photocmd)

 pipeline.set_state(gst.STATE_PLAYING)

 time.sleep(1)

 pipeline.set_state(gst.STATE_NULL)

 journal_object = datastore.create()

 journal_object.metadata[‚title‘] = title + ‚: ‚+

str(i) + ‚/‘ + str(number)

 journal_object.metadata[‚mime_type‘] = ‚image/

jpeg‘

57

 journal_object.metadata[‚tags‘] = ‚Stop motion‘

 journal_object.file_path = ‚/tmp/photo%i‘ % (i,) +

‚.jpg‘

 datastore.write(journal_object)

 journal_object.destroy()

 # delay until next shot

 time.sleep(delay)

 i = i + 1

print „The end.“

The complete .xo activity with the simplistic GUI shown above is available here:
http://www.olpcaustria.org/mediawiki/index.php/Activity_handbook#Code_examp-
les

Game Buttons

The game buttons have probably been one of the least utilized features that the
OLPC XO laptop has to offer. A couple of activities such as record and browse offer
rudimentary support for the buttons. However most people only really use them
when either running the read activity in handheld-mode or when updating their
firmware.

Over the coming months this situation will most likely improve, mainly through ef-
forts such as the Season of Usability project „Handheld-Mode Interface for the OLPC
XO Laptops“ (http://season.openusability.org/index.php/projects/2008/olpc). We
also believe that as activity developers in general become more more experienced
with the XO and its capabilities there will be a bigger focus on utilizing its special
hardware features in the future.

58

Microphone

This section will be updated once we come up with a good idea for an activity.

For further information on how the microphone can be used please refer to
the record (wiki (http://wiki.laptop.org/go/Record), git (http://dev.laptop.
org/git?p=activities/record;a=summary)) and measure (wiki (http://wiki.laptop.
org/go/Measure), git (http://dev.laptop.org/git?p=projects/acoustic-measure-
activity;a=summary)) activities.

Links

 Programming the camera
http://wiki.laptop.org/go/Programming_the_camera

 GStreamer
http://wiki.laptop.org/go/GStreamer

 GStreamer website
http://www.gstreamer.net/

•

•

•

www.olpcaustria.org

www.laptop.org

Das Activity Handbook der OLPC (Austria) wird größtenteils

durch die Unterstutzung der ‚net culture labs’ realisiert.

	1.Introduction to Sugar
	2.Preparation
	Emulation
	Linux
	Mac OS X
	Windows XP
	QEMU on Windows
	VirtualBox

	Live-CD
	(1) LiveBackup Live-CD
	(2) Xubuntu Live-CD
	(3) Pilgrim Fedora Live-CD [DIY]
	The sugar-jhbuild skript is a python script that is using for building and running Sugar from source. It might have dependencies on your System that you have to install before you can use sugar-jhbuild. You should check the laptop.org Wiki if you have all git-clone git://dev.laptop.org/sugar-jhbuild

	Ubuntu packages
	Ubuntu (7.10 Gutsy Gibbon / 8.04 Hardy Heron)

	XO Laptop
	General notes
	Links

	3.Sugar Basics
	The package layout
	The package files in more detail
	MANIFEST
	HelloWorldActivity.py
	setup.py
	activity.info
	icon.svg
	xo bundle
	 Localization issues

	4.Sugar User Interface
	Toolbox / Toolbars
	Links

	5.�The Sugar Services for Datastore and Collaboration
	D-Bus - the heart of the Sugar services
	The Activity Life Cycle
	Startup
	Operation
	Shutdown

	The datastore
	Metadata
	Progressbar
	Mountpoints
	File access

	Collaboration
	Sharing
	Inviting
	Joining
	Leaving
	Buddies
	Tubes
	Stream Tubes

	6.The Journal
	Storing Journal entries
	Retrieving Journal entries
	Journal UI
	Links

	7.�Using the XO Input Devices
	Camera
	StopMotion Activity
	Game Buttons
	Microphone
	Links

