Activities/Turtle Art/Uso de Tortuga Arte Sensores: Difference between revisions
Line 348: | Line 348: | ||
El portátil XO se puede utilizar para hacer experimentos sobre el movimiento, | El portátil XO se puede utilizar para hacer experimentos sobre el movimiento, haciendo rodar una esfera por una rampa. El XO1.5 es más rápido y más adecuado para ello. Se pueden fabricar interruptores de bajo costo con papel de aluminio. Los interruptores son 5 cm de ancho para proporcionar un intervalo de tiempo de encendido ("on")lo suficientemente largo para ser medido. | ||
Line 354: | Line 354: | ||
La tasa de registro se puede aumentar ( | La tasa de registro se puede aumentar (Turtle Blocks104) por uno de los archivos de parches Turtle Art, talogo.py en la home/olpc/Activities/TurtleArt.activity/TurtleArt self.max_samples haciendo el cambio de 1500 a 150, esto reduce el bucle de repetición de 12 mS a 4 ms, pero hay alrededor de 50mS "quietud". Para poder hacer esto sin tener que hacer un parche en el archivo, deberán usarse los interruptores de un ancho suficiente grande y un ángulo de inclinación de la rampa suficientemente pequeño tal que los intervalos de tiempo puedan ser registrados de acuerdo a las capacidades de la computadora portátil XO. | ||
A continuación se muestra un osciloscopio | A continuación se muestra un osciloscopio con umbral de disparo ("trigger") con base de tiempo calibrada. La "Acción 1" borra la pantalla y elige la escala, el programa espera en "Acción 2" hasta que se desencadena al accionarse el primer interruptor. La gráfica se inicia a continuación, "tiempo ()" en segundos se multiplica por 500 para establecer la posición horizontal de tal forma que 500 unidades de pantalla o 5 cuadrados corresponden a un segundo. | ||
Line 365: | Line 365: | ||
Los interruptores fueron puestos a 20cm, 60cm, 100cm, 140cm, 180cm y a lo largo de una rampa de 180 cm de longitud y 25 cm de altura. | |||
Los datos del osciloscopio se | Los datos del osciloscopio se muestran a continuación, cada cuadrado corresponde aproximadamente a 200 ms. | ||
Line 373: | Line 373: | ||
El | El acuerdo entre la teoría y el experimento se muestra a continuación. Tenga en cuenta que la matemática de una bola rodante no es simple, la energía potencial se convierte en energía cinética de traslación, Kt y la energía cinética de rotación, Kr. | ||
Mgh = Kt + Kr = 1 / 2 ^ mv 2 + 1 / 2 ^ Iw 2 | Mgh = Kt + Kr = 1 / 2 ^ mv 2 + 1 / 2 ^ Iw 2 | ||
Line 385: | Line 385: | ||
[[File:Acceleration.ods]] | [[File:Acceleration.ods]] | ||
Un experimento simple | Un experimento simple consiste en acelerar una bola por una rampa curva, medir la velocidad de salida horizontal con dos interruptores y predecir la posición de aterrizaje, como se muestra a continuación. La rampa es preferentemente curva, para que la bola no rebote cuando golpea los interruptores. | ||
[[File:Falling ball.jpg]] [[File:Parabola fall.JPG|250px]] [[File:Parabola timing.jpg]] | [[File:Falling ball.jpg]] [[File:Parabola fall.JPG|250px]] [[File:Parabola timing.jpg]] | ||
Line 393: | Line 393: | ||
distancia horizontal = vt = v x sqrt (2 h / g) | distancia horizontal = vt = v x sqrt (2 h / g) | ||
En este caso, | En este caso, la distancia entre interruptores es de 0,5 m, h= 0,6 m, tiempo 1,9 cuadrados @ 200 ms por cuadrado, g = 9,8 y la distancia horizontal fue de 0,4 m | ||
v = distancia x sqrt (2 h / g) | v = distancia x sqrt (2 h / g) |