
Turtle Blocks Python Export

A Report on my GSoC Project

Marion Zepf

October 7, 2013

1 Motivation

Turtle Blocks teaches children an important skill in today’s world: program-
ming. Its block-based graphical interface makes abstract concepts like loops
easy to understand and fun to play with. But it does not yet support the next
step in learning: writing code in a ’real’ programming language. My project
fills this gap by automatically converting block programs to Python code. It
enables the children to transfer their knowledge to a text-based language and
to focus on acquiring the new syntax.

2 Project Description

Turtle Blocks Python export lets the user export their programming project from
the Turtle Blocks activity to a Python script. The generated Python code can
be run outside of Turtle Blocks, for example from the command line or in the
Pippy IDE.

This tool is designed for users who are already proficient Turtle Block pro-
grammers and want to move on to text-based programming. It helps them trans-
fer their knowledge and skills from block-based to text-based programming, as
they can see their own creations in a new programming language. Thus, they
can focus on the new language rather than the content of the program.

3 Implementation Approach

3.1 Execution and Export — Two Sides of the Same Coin

Each block is associated with information on how to execute it in TurtleArt
(TA), and information on how to convert it to python code. These two pieces
of information are packed together into a single object, an instance of the class
Primitive. It holds a reference to the function or method to be called when
the block is executed in TA.

1



Figure 1: The pen down block, the corresponding python code, and a simplified
representation of its Primitive object.

a.

b. Turtle.set pen state(True)

c.

This facilitates exporting blocks that correspond directly to a python func-
tion. Examples include the forward block, which executes the method forward

of the Turtle class, and the int block, which resembles the built-in function
int. When these blocks are exported, the name of the associated function is
extracted from the Primitive object and used in the python code.

3.2 Constant Arguments

Some blocks, like the pen down block (fig. 1a), correspond to a function call
with a specific list of arguments. The pen down block represents a call to the
function Turtle.set pen state with the argument True, as shown in fig. 1b.
This argument has to be stored with the function, but it must not be passed
to it until the block is executed. This is why such arguments are stored in
the Primitive object of the block (fig. 1c). From there, they can easily be
retrieved and passed to the function during execution of the block, or converted
to python code together with the function. Each such argument is encapsulated
into a simple wrapper object of type ConstantArg.

3.3 Argument Slots and Wrappers

The forward block takes as its argument the distance by which the turtle should
move. This corresponds directly to the argument to be passed to the function
of its Primitive, to Turtle.forward. This block has one argument slot, and
so has its Primitive. In addition to a function, a Primitive object also stores
a list of arguments to be passed to the function. Some arguments are constant
(see section 3.2), and some are placeholders for the argument blocks attached
to the current block. The latter are represented by ArgSlot objects and their
number must be equal to the number of argument docks of their ‘parent block’.
The function of the Primitive must accept the total number of all arguments

2



Figure 2: The back block and a simplified representation of its Primitive object
before and after filling the argument slot.

a.

b.

(ConstantArgs and ArgSlots). When the block is executed or converted to
python code, the blocks attached to its argument docks are evaluated and their
return values, wrapped into ConstantArgs, replace the ArgSlots.

In other cases, the correspondence between ArgSlots and docked argument
blocks is not that simple. The back block (fig. 2a) uses the same function
for its Primitive as the forward block, but inverts the sign of the numeric
argument before passing it to Turtle.forward. The sign inversion step has to
be executed after the argument block has been evaluated, but before its return
value is passed to the function. It is ‘wrapped around’ the argument, so it is
called a ‘slot wrapper’. For these reasons, the callback for the sign inversion step
is stored in the ArgSlot object under the wrappper attribute (see fig. 2b). A
slot wrapper is executed (or converted to python code) just before the ArgSlot

is replaced by a ConstantArg.

3



Figure 3: The forever, repeat, and while blocks.

3.4 Groups of Primitive Functions

Some blocks correspond to several functions, such as the clean block, which
resets the plugins, clears the canvas, and stops all playing media, among other
things. Such a list of functions to be called can be grouped together by the
Primitive.group method, which calls all functions one by one. When it is ex-
ported, it is converted to several lines of python code, each holding one function
call.

3.5 Export to Python Constructs

A number of blocks corresponds to pieces of python code that are not function
calls. For instance, the action block that defines an action stack corresponds to
a function definition in python. The store in block corresponds to an assignment
statement. The Primitive objects of such blocks are handled specially when
they are exported, i.e. there is a fixed correspondence between the function
stored in the Primitive and the python code that it is converted to.

3.6 The Unity of Loops

All loops have in common that they have a body of statements (or blocks),
which is executed zero or more times. How often it is executed is controlled by
a loop controller that varies between different types of loops. For example, the
controller for the forever loop block always allows another repetition (fig. 4a).
The repeat loop controller allows only a fixed number of repetitions (fig. 4b),
and the controllers of the while and until loop blocks allow further repetitions
as long as a certain boolean expression does not change value (fig. 4c).

This unity of all loop types is captured by the function LogoCode.loop,
which is used by the Primitive objects of all loops (fig. 5). It gets two argu-

4



Figure 4: Loop controller functions of the three loop blocks from fig. 3 in sim-
plified form.

a. def controller_forever():

while True:

yield True

b. def controller_repeat(num):

for i in range(num):

yield True

yield False

c. def controller_while(condition):

while condition():

yield True

yield False

ments, a loop controller in the form of a generator object or function, and the
loop body as a list of primitive names to be resolved to Primitive objects later.
All loop controllers, except for that of the forever block, require an argument
which corresponds to the argument required by the block. This is why these
loop controllers are attached as slot wrappers to the first ArgSlot of the loop
block’s Primitive object. The loop controller for the forever block does not
require any arguments, and therefore it is attached as a ConstantArg.

3.7 Automatic Type Conversion

Most blocks accept only a certain type of arguments. E.g., the minus block
only accepts two numbers, not strings. Even the plus block, which accepts
any combination of numbers and strings, needs information on the type of its
arguments to decide whether to add them mathematically or to concatenate
them to a big string.

In addition, strings that represent a number must automatically be converted
to the corresponding number, colors have an associated numeric value that
can be used as a number, and even characters can function as the number
representing their unicode value. These ‘special’ type conversions are already
present in some blocks, but not used consistently across blocks.

The new type system addresses all these issues at once. It requires every
Primitive object and every value of a value block to belong to a certain type.
In the case of Primitives, the type represents the return type of the Primitive
object. This makes it possible to use the output of one block as the input of
another and apply all necessary type conversion automatically.

The types form a network together with their converters. A converter is a
function that converts a value from one type to another. The simplest example

5



Figure 5: Simplified representations of the Primitive objects of the three loop
blocks from fig. 3.

a.

b.

c.

6



Figure 6: The type network. An arrow marks a converter from one type to
another. The typical converter functions int, float, str, and the identity are
indicated through color, and unusual converter functions are attached to the ar-
rows. All types can also be converted to themselves or to the type TYPE OBJECT

using the identity.

is the built-in python function int, which converts e.g., a numeric string like
"100" to the integer 100. The network of types and converters is stored as a
two-level nested dictionary in the constant TYPE CONVERTERS (in the module
tatype). Its layout is simple — TYPE CONVERTERS[TYPE A][TYPE B] holds the
converter from TYPE A to TYPE B. A graphical representation of the type network
is given in fig. (6).

When an ArgSlot is filled with an argument, TA automatically finds and
applies the right converter based on the type the ArgSlot requires and the type
of the filler. This way, attaching the color block white to the forward block
(fig. 7a) has the same effect as attaching the number block with the value 100.
This is because the ArgSlot of the forward block requires type TYPE NUMBER,
and the value of the white block is of type TYPE COLOR (fig. 7b). The converter
function from TYPE NUMBER to TYPE COLOR is the python built-in function int,
which, when applied to a Color object, yields its associated numeric value.

The type system is the same for execution and export, thereby ensuring
that the exported python code behaves exactly like the original block program.
When a block with an arugment is exported, the ArgSlot’s type requirement
is compared to the type of the argument, and the appropriate type converter is
wrapped around the argument.

7



Figure 7: The forward block with a color argument and a simplified represen-
tation of its Primitive object before and after filling the argument slot.

a.

b.

4 Difficulties and their Solution

4.1 Execution of While and Until Loops

The while and until loop blocks are different from the other loops in that they
require the boolean expression to be re-evaluated before every iteration step.
This is not required for other loop types because the forever loop’s controller
takes no argument, and in the case of the repeat loop, it is sufficient to evaluate
the numeric argument once before the loop starts. Its value can be saved inside
the generator that allows or disallows further iterations.

This solution is not applicable to the while and until loops because each
iteration step has the potential to change the value of the boolean expression.
Therefore, the boolean expression has to be stored in a way that makes it
possible to re-evaluate it. This is achieved by passing arguments to their ‘parent’
Primitive not as the result of evaluating them, but as Primitives themselves.
The ‘parent’ Primitive then decides whether to call its argument immediately,
or to store it.

The Primitives of the while and until loops do not call their first argument,
but pass it on to the loop controller. The controller calls the argument before
each iteration step to determine whether to execute the step or to break out of
the loop.

8



Figure 8: The plus block with two numeric or two string arugments and a
simplified representation of its Primitive object.

a.

b.

c.

4.2 Disjunctions

The plus block does two different things — mathematical addition or string
concatenation — based on the types of its arguments. If both arguments are
numbers, they are added up (fig. 8a), otherwise both arguments are converted
to strings and concatenated (fig. 8b). This makes it necessary to define two
different Primitive objects for the plus block (fig. 8c), each with different type
requirements in its ArgSlots.

The set color block always uses the same function to set the pen color, but
it accepts both color value blocks and numeric values. It is important to note
that a color argument must not be converted to a number before being passed
to the function Turtle.set pen color (the primitive function of the set color

9



block), since that would not update the pen shade and pen gray values to the
color’s shade and gray values. So, it is not possible to rely on automatic type
conversion from TYPE COLOR to TYPE NUMBER in this case. Instead, the set color
block’s Primitive must be able to accept either a value of type TYPE COLOR or
one of type TYPE NUMBER.

These are only two examples that show the necessity of disjunctions in the
system of Primitives and types. In order to make disjunctions easier to instan-
tiate for block inventors, the utility function or (from the module taprimitive)
is provided. It takes all disjuncts of a disjunction as its arguments and returns
an object of the appropriate type that represents a disjunction of several types,
ArgSlots, lists of arguments, or entire Primitive objects.

During execution or export, the disjunctions are tried in order, and the first
disjunction that leads to matching types is chosen. Two types are considered
to match for this purpose if there is a converter function registered for them.

4.3 What is the Type of Boxes with Unknown Content?

At the time of execution of a block program, values can be stored in boxes or
retrieved from them. The retrieved values can also serve as arguments to other
blocks as their type can be identified at runtime. This is not the case during
export. It is impossible to predict what type of value a box will hold at the time
the exported code is executed, as the value and its type may depend on user
input or be subject to chance. Yet the exported code must behave the same
way as the block program.

The solution to this problem is the special type TYPE BOX. It is the return
type of the box block, as well as of several user input blocks. During export,
this type is handled specially by the type system. Converters are not applied
directly to value of TYPE BOX, but the type system’s utility function convert

(from the module tatype) is used instead. It accepts a value and a target type,
and converts the value to the given target type. E.g., if the value of a box
must be converted to an integer, the resulting python code is not int(BOX[’my
box’]), but rather convert(BOX[’my box’], TYPE INT).

5 Developer Documentation

Two tutorials explain how to define a new block and a new type in the type
system, respectively. They are intended for TurtleArt developers and plugin
writers who wish to add new blocks to TurtleArt or to make existing blocks
exportable to Python code. They are available as markdown files under doc/

in the root directory of the Turtle Art repository.
A large number of documentation strings and comments in the code ex-

plain the purpose of classes, methods, attributes, and constants. As part of this
project, I also added in-code documentation to classes and methods which are
not directly related to the Python export tool, such as the Block class. Such

10



documentation is useful for other TurtleArt developers, especially new develop-
ers who want to get an overview of the existing code base.

6 Achievements

As a result of this project, TurtleArt users can export their block programs
to python code. The export functionality is restricted to those blocks with a
Primitive object — yet this includes more than half of all blocks. The blocks of
the Turtle, Pen, Pen Colors, Numeric Operators, Flow Operators, and Variable
Blocks palettes are exportable, and so are the most important blocks from some
other palettes, like e.g., the show block.

The implementation of the export functionality is modular and documented
extensively, so that other developers can continue to make the rest of the blocks
exportable as well. In addition, inventors of new blocks can use the system of
Primitives and types to implement their blocks and make them exportable at
the same time.

7 References and Further Reading

• Git repository for development of the Python export tool: https://git.
sugarlabs.org/~mzepf/gsoc-python-export

The most recent version of the code is in the branch type-system.

• Git repository for design documents and sample code: https://github.

com/outofthecave/ta-python-export-dev

• Project wiki page: http://wiki.sugarlabs.org/go/Summer_of_Code/

2013/Turtle_Blocks_Python_export_project

• Project proposal wiki page: http://wiki.sugarlabs.org/go/Summer_

of_Code/2013/Turtle_Blocks_Python_export

• Google Melange page: http://www.google-melange.com/gsoc/project/
google/gsoc2013/mzepf/9001

11

https://git.sugarlabs.org/~mzepf/gsoc-python-export
https://git.sugarlabs.org/~mzepf/gsoc-python-export
https://github.com/outofthecave/ta-python-export-dev
https://github.com/outofthecave/ta-python-export-dev
http://wiki.sugarlabs.org/go/Summer_of_Code/2013/Turtle_Blocks_Python_export_project
http://wiki.sugarlabs.org/go/Summer_of_Code/2013/Turtle_Blocks_Python_export_project
http://wiki.sugarlabs.org/go/Summer_of_Code/2013/Turtle_Blocks_Python_export
http://wiki.sugarlabs.org/go/Summer_of_Code/2013/Turtle_Blocks_Python_export
http://www.google-melange.com/gsoc/project/google/gsoc2013/mzepf/9001
http://www.google-melange.com/gsoc/project/google/gsoc2013/mzepf/9001

	Motivation
	Project Description
	Implementation Approach
	Execution and Export — Two Sides of the Same Coin
	Constant Arguments
	Argument Slots and Wrappers
	Groups of Primitive Functions
	Export to Python Constructs
	The Unity of Loops
	Automatic Type Conversion

	Difficulties and their Solution
	Execution of While and Until Loops
	Disjunctions
	What is the Type of Boxes with Unknown Content?

	Developer Documentation
	Achievements
	References and Further Reading

