
Sugar Human Interface Guidelines
This document was originally written in 2006 as a goal. It was then mostly, but incompletely, im-
plemented and shipped. Some of the goals have shifted based on user experience; these new
goals are mostly visible at Designs. These new goals have also now been partially implemented.
There is no single location that documents what has and has not been implemented from these
two sets of goals. Work is proceeding to incorporate the new goals from Designs back into this
document.

http://wiki.sugarlabs.org/go/Design_Team/Designs
http://wiki.sugarlabs.org/go/Design_Team/Designs
http://wiki.sugarlabs.org/go/Design_Team/Designs
http://wiki.sugarlabs.org/go/Design_Team/Designs

Introduction

Who Should Read This Document
These guidelines are targeted primarily at developers who are building tools for the OLPC laptop.
They provide an in-depth view of the various features of Sugar, the laptop user interface, and focus
closely on the parts of the UI that pertain directly to software development and the ways in which
applications, presented as "activities," interact with the operating system.
However, as these guidelines are intended to provide a comprehensive overview of the user inter-
face, these pages should also be of general interest. Hopefully, the descriptions of the various UI
elements, particularly in the Laptop Experience section, will quench the thirst of all who want to
better understand the project and its goals.

How to Read This Document
Although many who make it to this page will have read at
least one set of human-interface guideline, we strongly re-
quest that you read the content of this document in full.
While many of the terms contained within will be quite famil-
iar to you, we urge you to review them anyway, since our
approach to the user experience shifts away from some traditional models. This document may
introduce some unfamiliar ideas around such otherwise familiar terms that you should consider
throughout development.
We urge you to read this document once from start to finish, but extensive use of both internal and
external hyperlinks will also allow you to peruse its contents at will. Hopefully, this will make revisit-
ing particular parts of the guidelines quick and easy, and will allow you to move naturally through
the most pertinent details. Additionally, the document has been laid out in a 3-tier structure —
document, chapters, and pages. Feel free to view the document in full to get a broad picture or to
print a hardcopy, or use the integrated navigation to move through one chapter or page at a time.
We have included relevant links to the APIs in order to make the relationship between design and
implementation clearer. Please take advantage of this as you develop for the laptops.

Providing Feedback
This document remains in constant flux as the project moves forward. We value any feedback that
you might have, and would ask that you share any thoughts and suggestions via the wiki discus-
sion pages. Discussions surround each tier of the document; if you have specific comments,
please post them in the discussion for the corresponding page. For more general comments, feel
free to use the talk pages at the chapter level or for the HIG as a whole. Links to the talk pages re-
side next to each section header.

2

API Reference
Inline references to related APIs
appear throughout.

http://wiki.sugarlabs.org/go/What_is_Sugar%3F
http://wiki.sugarlabs.org/go/What_is_Sugar%3F
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines

Core Ideas

Activities, Not Applications
There are no software applications in the traditional sense
on the laptop. The laptop focuses children around "activi-
ties." This is more than a new naming convention; it repre-
sents an intrinsic quality of the learning experience we hope
the children will have when using the laptop. Activities are distinct from applications in their fo-
ci—collaboration and expression—and their implementation—journaling and iteration.

Presence is Always Present
Everyone has the potential for being both a learner and a
teacher. We have chosen to put collaboration at the core of
the user experience in order to realize this potential. The
presence of other members of the learning community will
encourage children to take responsibility for others' learning as well as their own. The exchange of
ideas amongst peers can both make the learning process more engaging and stimulate critical
thinking skills. We hope to encourage these types of social interaction with the laptops.
In order to facilitate a collaborative learning environment, the laptops employ a mesh network that
interconnects all laptops within range. By exploiting this connectivity, every activity has the poten-
tial to be a networked activity. We aspire that all activities take advantage of the mesh; any activity
that is not mesh-aware should perhaps be rethought in light of connectivity. As an example, con-
sider the web-browsing activity bundled with the laptop distribution. Normally one browses in isola-
tion, perhaps on occasion sending a friend a favorite link. On the laptop, however, a link-sharing
feature integrated into the browser activity transforms the solitary act of web-surfing into a group
collaboration. Where possible, all activities should embrace the mesh and place strong focus on
facilitating such collaborative processes.

Tools of Expression
Starting from the premise that we want to make use of what people already know in order to make
connections to new knowledge, our approach focuses on thinking, expressing, and communicating
with technology. The laptop is a "thing to think with"; we hope to make the primary activity of the
children one of creative expression, in whatever form that might take. Thus, most activities will fo-
cus on the creation of some type of object, be it a drawing, a song, a story, a game, or a program.
In another shift in the language used to describe the user experience, we refer to objects rather
than files as the primary stuff of creative expression.
As most software developers would agree, the best way to learn how to write a program is to write
one, or perhaps teach someone else how to do so; studying the syntax of the language might be
useful, but it doesn't teach one how to code. We hope to apply this principle of "learning through
doing" to all types of creation, e.g., we emphasise composing music over downloading music. We
also encourage the children to engage in the process of collaborative critique of their expressions
and to iterate upon this expression as well.
The objectification of the traditional filesystem speaks more directly to real-world metaphors: in-
stead of a sound file, we have an actual sound; instead of a text file, a story. In order to support
this concept, activity developers may define object types and associated icons to represent them.

3

API Reference
Sugar Activity APIs

API Reference
Package: sugar.presence

http://en.wikipedia.org/wiki/Software_Application
http://en.wikipedia.org/wiki/Software_Application
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://api.sugarlabs.org/
http://api.sugarlabs.org/
http://wiki.laptop.org/go/Sugar_Architecture/API/sugar.presence
http://wiki.laptop.org/go/Sugar_Architecture/API/sugar.presence

Journaling
The concept of the Journal, a written documentation of everyday events, is generally understood,
albeit in various forms across cultures. A journal typically chronicles the activities one has done
throughout the day. We have chosen to adopt a journal metaphor for the filesystem as our basic
approach to file organization. While the underlying implementation of such a filesystem does not
differ significantly from some of those in contemporary operating systems, it also holds less impor-
tance than the journal abstraction itself.
At its core, our journal concept embodies the idea that the filesystem records a history of the things
a child has done, or, more specifically, the activities a child has participated in. Its function as the
store of the objects created while performing those activities is secondary, although also important.
The Journal naturally lends itself to a chronological organization (although it can be tagged,
searched, and sorted by a variety of means). As a record of things a child has done—not just the
things a child has saved—the Journal will read much like a portfolio or scrapbook history of the
child's interactions with the machine and also with peers. The Journal combines entries explicitly
created by the children with those which are implicitly created through participation in activities;
developers must think carefully about how an activity integrates with the Journal more so than with
a traditional filesystem that functions independently of an application. The activities, the objects,
and the means of recording all tightly integrate to create a different kind of computer experience.

Design Fundamentals

Know Your Audience
Inexperienced
The goal of OLPC is to provide children with new opportunities to explore, experiment, and ex-
press themselves. Many children in need of such opportunities have previously had little or no ac-
cess to computing, and so will be unfamiliar with the laptop and how to interact with it. This will un-
doubtedly have effects on some aspects of activity development. On the one hand, it means that
developers must focus energy into making interfaces discoverable, wholly intuitive, and building
metaphors that strengthen and clarify the interface. On the other hand, since the laptop will be the
first experience of computing for many children, activities do not have to be overly true to legacy
behaviors or expectations. This frees developers to innovate.

Young
Many of the children receiving laptops will be as young as five or six; others will be in their mid
teenage years. Additionally, those that receive them at a young age will continue to use them
throughout their education. Therefore, it is important to develop activities in ways that scale well
across age levels.

International
The OLPC initiative, by its nature, requires international involvement and participation. Developers
must keep in mind the broad range of cultures and languages that the laptops must transcend. In
particular, activities should not depend on western icons and modes of thinking, but should ab-
stract ideas to a level that would be familiar to humankind in general, where possible. For instance,
consider the camera button on the keyboard. Though one might be inclined to label this key with a
small image of a camera and lens, the eye graphic speaks directly to our human capacity for vi-
sion, providing a cross-cultural icon that represents the computer's ability to capture what it sees.

4

http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience#The_Journal
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience#The_Journal

Key Design Principles
Low floor, no ceiling: this mantra should guide your development efforts for OLPC. All activities and
interfaces should be designed in such a way as to be simple and intuitive to users of all age
groups, nationalities, and levels of computer experience. At the same time, we don't wish to im-
pose unnecessary limitations on the software either. Instead, we hope to create a platform suitable
for all kinds of creative expression which provides a low floor to the inexperienced, but doesn't im-
pose a ceiling upon those who are. This is a worthy goal, but will require a genuine effort on the
part of developers, who must take many aspects of design into account. The following list, while
certainly not comprehensive, provides a starting point for such considerations.

Performance
The OLPC laptop bucks the trend of "more, faster, fatter"; we aim to provide a computer tailored to
the needs of children in the context of their learning, not to the needs of frantic video games or of-
fice applications. We are, however, working within constraints of component cost, robustness, and
power consumption. To satisfy these constraints, we have opted for NAND flash rather than a hard
disk and a modest 256MB of memory (Please see hardware specifications). Thus, developers
must make every effort to write efficient code while minimizing memory usage.
Since there is no swap space on the laptop, only a limited number of activities can run concur-
rently; the Sugar UI exposes these details directly to the children. The Home screen features an
activity ring that contains icons representing each instance of an open activity. The size of the ring
segment that a given activity occupies represents its overall memory usage; when the ring fills up,
no additional activities may be launched until some resources have been freed. Take these limita-
tions into account as you develop activities, since they will have a greater impact on the perform-
ance of your software on the laptop than on other platforms.

Usability
OLPC places an emphasis on discoverability and usability due to our target audience. Usability
has everything to do with the actual behavior of the activities, the layout of the buttons and tools,
and the feedback that the interface provides to the children when they interact with it. Ultimately,
the design decisions that make your activities usable will depend greatly on the type of activity you
are developing, and it will be up to you to consider carefully the kinds of interactions that the chil-
dren will expect when presented with it. As a general rule, if the interface provided does what the
child expects it to, you are off to a good start. However, since it is quite difficult to know what they
will expect—and in practice not all children will expect the same things—there is no substitute for
user testing.

Simplicity
We designed the entire laptop interface with a goal of simplicity. It can be tempting—and also quite
easy—to add an overabundance of features to software: the abundance of MIPS and memory of-
ten exacerbate the software-bloat phenomenon. The laptop hardware "limitations" lead toward a
more concise direction and aid in designing for simplicity.
Keep in mind that simple doesn't necessarily mean limited. OLPC hopes to demonstrate to the
world that simple—even minimal—controls can have great expressive power. Avoid bloated inter-
faces that do too much, and limit the controls to those immediately relevant to the task at hand.
Rather than creating a "Swiss Army knife" of an activity, think of the laptop itself as the knife, and
instead develop a particular tool for that knife that does one thing, and does it very well. When all
the activities on the laptop embrace this idea, the true power of the laptop will emerge.

Reliability
Of course we want to avoid instances where things go wrong; this should be a goal for every piece
of software. We are committed to ensuring that the UI framework prevents activities from causing

5

http://wiki.laptop.org/go/Hardware_specification
http://wiki.laptop.org/go/Hardware_specification
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Home
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Home
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Discovery
http://wiki.sugarlabs.org/go/Discovery
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Design_Fundamentals#Know_Your_Audience
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Design_Fundamentals#Know_Your_Audience

system crashes. Developers should consider a "fail-soft" approach to their designs, such as incor-
porating a suitable behavior for the spontaneous termination of an activity.

Security
Security is detailed elsewhere in this wiki (See OLPC:Bitfrost). Our goal is to protect against five
categories of "bad things" software can do:

• damaging the laptop;
• compromising privacy;
• damaging the children's data;
• doing bad things to other people; and
• impersonating the child.

It is important to include anti-theft measures and common mechanisms for objectionable-content
filtering.
From the perspective of the user interface, it is important that these goals be achieved without the
use of menus, pop-up boxes, passwords, etc., as these approaches are meaningless to most peo-
ple.

Adaptability
Several use conditions should be taken into consideration in designing activities: the laptop has
both a grayscale (sunlight) mode and a color (backlight) mode; the mesh—while always avail-
able—may or may not be connected to the Internet at the time the activity is active; the laptop may
be configured in either laptop mode (keyboard and touchpad exposed) or handheld mode (game
controller, camera, microphone and speakers only). Signal strengths, and therefore bandwidth,
may fluctuate, and at times activity partipants may even drop off temporarily. Activities should han-
dle all of these cases with care. E.g., temporary loss of connectivity should be handled silently, and
reconnection of an individual to an activity they were previously participating in should happen with
no noticeable side-effects as outlined in the guidelines for activity robustness.

Recoverability
Recoverability is fundamental to encouraging exploration. With creative exploration among OLPC's
main goals, it therefore becomes an issue of high importance on the laptops. When children know
they have a fallback plan—a way back to the current state of things—they will much more fre-
quently go beyond their comfortable boundaries and experiment with new tools and new creative
means of expression.
The journal provides a partial notion of recoverability, since its auto-journaling amounts to maintain-
ing an automatic incremental backup. The ability, for children, to choose to "keep" anything they're
working on in its current state furthers this idea.
However, the primary and essential means of recoverability remains the ability to undo one's ac-
tions. Of course, the notion of undo/redo becomes complicated in the realm of collaborative edit-
ing, which imposes a limitation on the extent to which undos are possible, since collisions could
often occur between the things one child wants to undo and the things another child has already
changed since those were done. Nonetheless, we are dedicated to providing this functionality to
every extent possible, and activities should strive to support this to the best of our ability.
(Future revisions of the keyboard may even have an undo/redo key to further strengthen this idea.)

Interoperability
Coming soon...

6

http://wiki.laptop.org/go/Bitfrost
http://wiki.laptop.org/go/Bitfrost
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Input_Systems#.22Hand-held.22_Mode
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Input_Systems#.22Hand-held.22_Mode
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Activity_Robustness
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Activity_Robustness
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Journal
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Journal
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Input_Systems#Keyboard
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Input_Systems#Keyboard

Mobility
Of course, as with all portable computers, a general notion of mobility is intrinsic to the laptops.
However, in the hands of children, this mobility rises to a new level, since we can expect that they
will carry them not only to and from school, but on a hike, onto the playground, or to any number of
other locations where they can learn and experience the world. Their physical form has been de-
signed with ruggedness in mind. The important thing to consider is the effect such mobility can,
and should, have on the activities themselves. The lens of the built-in camera looks a lot different
when it's treated not as a simple webcam, but as a way to capture the world around them, both
indoors and out.

Transparency
OLPC also hopes to encourage the children using the laptops to explore the technology under the
surface. Towards this end, a view source key has been added to the laptop keyboards, providing
them with instant access to the code that enables the activities that they use from day to day. This
key will allow those interested to peel away layers of abstraction, digging deeper into the codebase
as they learn.
To enable such layered exploration, OLPC has written much of what can be in Python, a scripting
language, to enable children to view the source code. This means, aside from general good prac-
tice, code should be both readable and well commented. The PEP 8 style guidelines for Python
provide an excellent resource, and OLPC recommends that developers follow the practices laid out
therein unless a compelling reason exists not to do so.

Accessibility
There are lots of things to think about that relate to accessibility in a set of human interface guide-
lines. We've just started hashing out general accessibility issues at the OLPC:Accessibility page.
Broadly speaking, the user interface of the GUI shell and of activities must address the following
accessibility issues:

• Using the interface only from the keyboard (without a mouse or trackpad)
• Using the interface without requiring the ability to distinguish color (a significant portion of the

population has some level of color blindness)
• Providing an enlarged print/icon option for folks whose vision is less than 20/20 (but who still

can see things that are somewhat enlarged - e.g. 18 point fonts)
• Using the keyboard without needing to press more than one key at a time (all modifiers must

work with AccessX functionality)
• Supporting programmatic access to the GUI (which for us will mean supporting ATK in Sugar

and all activities)
• Either shipping with some number of assistive technology applications (is a screen reader an

"activity"?), or making them easy to download
• Providing some way for a user to discover accessibility support and enable what they need

(Windows XP & Vista offer an "accessibility wizard" for this purpose; we don't have good up-
stream technology from GNOME we can take for this unfortunately; the Ubuntu accessibility
folks are perhaps furthest along in thinking about this)

7

http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/View_Source
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/View_Source
http://wiki.sugarlabs.org/index.php?title=Python&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Python&action=edit&redlink=1
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://wiki.laptop.org/go/Accessibility
http://wiki.laptop.org/go/Accessibility
http://developer.gnome.org/doc/API/2.0/atk/
http://developer.gnome.org/doc/API/2.0/atk/

The Laptop Experience

Introduction
Most developers are familiar with the desktop metaphor that
dominates the modern-day computer experience. This
metaphor has evolved over the past 30 years, giving rise to
distinct classes of interface elements that we expect to find
in every OS: desktop, icons, files, folders, windows, etc.
While this metaphor makes sense at the office—and perhaps even at home—it does not translate
well into a collaborative environment such as the one that the OLPC laptops will embody. There-
fore, we have adopted a new set of metaphors that emphasize community. While there are some
correlations between the Sugar UI and those of traditional desktops, there are also clear distinc-
tions. It is these distinctions that are the subject of the remainder of this section. We highlight the
reasoning behind our shift in perspective and detail functionality with respect to the overall laptop
experience.

• Desktop : Neighborhood
• Menubar : The Frame
• Hierarchical Filesystem : Journal
• Applications : Activities
• Files : Objects
•

Zoom Metaphor
Four distinct zoom levels define the
laptop: Neighborhood, Groups,
Home, and Activity

The mesh network is a permanent
fixture of the laptop environment
and is represented explicitly in the
interface. A zoom is used to relate
four discrete views, each of which
caters to a particular set of goals:
Home, Groups, Neighborhood, and
Activity. Using keyboard shortcuts
or controls in the Frame, children
may zoom in and out on the mesh
community.

API Reference
Package sugar.shell.view.home

8

API Reference
Package sugar
Package sugar.shell

http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.home&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.home&action=edit&redlink=1
http://en.wikipedia.org/wiki/Desktop_metaphor
http://en.wikipedia.org/wiki/Desktop_metaphor
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Frame
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Frame
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Journal
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Journal
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Frame#Objects
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Frame#Objects
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience#The_Frame
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience#The_Frame
http://api.sugarlabs.org/
http://api.sugarlabs.org/
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API&action=edit&redlink=1

Home
The Home view: Each child chooses a
dual-tone color scheme for her XO char-
acter that is used throughout the inter-
face. Activity icons are color-coded by the
child who launched the activity.

Of all the zoom levels, the Home view
relates most closely to the traditional
desktop. As the first screen presented to
the child at startup, it serves as a starting
point for the exploration of both the mesh
network and also of personal activities
and objects. From this view, the child
may either back up first to their Groups
— such as their Friends or their Class —
and beyond that to a view of the entire
mesh Neighborhood, or, instead, zoom in

to focus on a particular Activity.
The Home view interface is minimalistic. In the center of the screen, the XO icon—rendered in the
child's user-specified colors—represents the child to whom the laptop belongs. The activity ring
surrounds the character, indicating all of the currently open activities. Furthermore, the section of
the ring that a given activity occupies directly represents the amount of memory that the particular
activity requires to run, providing immediate visual feedback about memory constraints and expos-
ing a means for resource management that
doesn't require knowledge of the underlying ar-
chitecture. Most activity management happens
here: starting new private activities, ending cur-
rent activities, and switching between activities.
When used in conjunction with the Bulletin Board, the Home view becomes the most direct corre-
late to a typical PC desktop as a place for keeping things handy: tomorrow's homework, a drawing
one is working on, a favorite song, a reminder to oneself to do one's chores, etc.
See Activity Management for new design images.

Groups
The Groups view: Members of the currently
selected group and their current activities
are visible from this view. Hovering over a
“missing” XO reveals an "away message."

The Groups view takes a small step back
from the child's Home space, opening up to
include their circle of friends, their class-
mates, and any other groups to which a
child belongs. The Friends group essen-
tially represents a spatially viewable and
editable buddy list. From here the child can
add or remove friends and move individu-
als around, perhaps arranging them logi-
cally. The Class group is defined dynami-
cally, and includes all others in the same
class, and their teachers as well. This group

provides the perfect space for working and sharing with classmates, posting projects for class cri-
tique, or for picking up the homework assignment the teacher posted to the class Bulletin Board.

9

API Reference
Package sugar.shell.view.home.activitiesdonut

http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Groups
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Groups
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Neighborhood
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Neighborhood
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Icons
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Icons
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Private_Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Private_Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Bulletin_Boards
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Bulletin_Boards
http://wiki.sugarlabs.org/go/Design_Team/Designs/Activity_Management
http://wiki.sugarlabs.org/go/Design_Team/Designs/Activity_Management
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Bulletin_Boards
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Bulletin_Boards
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.home.activitiesdonut&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.home.activitiesdonut&action=edit&redlink=1

In addition to several special classes of groups, children may also generate groups on their own.
This might provide a way for a close group of friends to keep up with each other's activities, or for a
group of aspiring photographers to share photos. In a classroom setting, this provides a way for
the children to create temporary groups for working on classroom exercises, or long term groups
for extended projects. To create a group, a child can search for or select any number of individuals
on the mesh. Each of these individuals will receive an invitation to join the group, and upon accept-
ing the invitation will have its name added to their list of Groups, where they can see and chat with
members, and post to the group Bulletin Board. Although one person initially creates a group,
groups are not managed. Instead, people may choose to leave a group on their own, and anyone
in the group may invite other members into it. When this happens, all current group members re-
ceive introduction notification, making them aware of the new member. This open model simplifies
the interaction and encourages the learning of natural social dynamics instead of attempting to en-
force them via rules and restrictions.
Groups have several advantages. First, it allows
the children to view their friends, classmates, and
other groups, and allows them to freely chat with
them as well. Additionally, each group will have its
own private Bulletin Board where members can post notes and share Objects. Finally, all of the
members of the selected group — a child's friends, for instance —receive invitations whenever the
child starts an activity from the Groups view, making collaboration implicit. Moreover, this view al-
lows the child to see what activities their class, friends, and other groups are presently engaged in,
providing the opportunity to join any non-private activities. Already, you can see how this view
changes the usual method of application launch, allowing one to start new networked activities or
join existing ones directly.

Neighborhood
The Neighborhood view (or Mesh view): All chil-
dren visible on the mesh network can be seen
clustered around shared activities; Away mes-
sages are also accessible from this view.

Zooming out one more step we reach the
Neighborhood view. Here children can see eve-
ryone on their local mesh. At this level we intend
to support a variety of views, each with a differ-
ent focus: the individuals; the activities in which
they are presently engaged; etc. In the figure,
individuals are shown clustered around their
currently active activities, providing a direct vis-
ual representation of the popularity of an activ-
ity, since group size is immediately perceptible.

While the Neighborhood view doesn't currently provide any true spatial or geographical data, it
does provide an at-a-glance social geography of the mesh and its participants. Similar to the
Groups view, launching an activity here implicitly opens that activity up for anyone in the Neighbor-
hood to join. While no one receives an explicit invitation in this case, the newly started activity will
appear in the view, with its participants clustered about it, so that anyone who wishes to may join.
Of course, this also means that the Neighborhood provides an excellent space for exploration.
Here, one can both search for, locate and join activities of interest using a powerful and adaptable
search technology, and also interact with and make friends with other children in their neighbor-
hood they haven't yet met.

API Reference
Package sugar.shell.view.home.MeshBox

10

API Reference
Package sugar.shell.view.home.FriendsBox

http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.home.MeshBox&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.home.MeshBox&action=edit&redlink=1
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Notifications
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Notifications
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Invitations
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Invitations
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Joining_Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Joining_Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Explicit_Invitations
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Explicit_Invitations
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Joining_Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Joining_Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Global_Search
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Global_Search
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.home.FriendsBox&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.home.FriendsBox&action=edit&redlink=1

Activity
Zooming in from the Home view, a child finds the Activity view. This view contains the activities
where all of the actual creation, exploration, and collaboration takes place. This is where you, the
developer, come into play, providing new and engaging tools, extending the functionality and en-
couraging new types of creative exploration.
Though multitasking has become somewhat of a standard in today's desktop computing world,
we've chosen to break away from this model, instead adopting a fullscreen activity view that fo-
cuses the children's energies on one specific task at a time. Although one may have several activi-
ties open in the activity ring at any given moment, only one can be denoted as the active activity
(similar to focus in a window system). Several factors contributed to this decision: first, although
the laptops have an extremely high-resolution display—200dpi—the actual viewing area remains
quite small—a modest 7.5-inch diagonal—leaving little room for multiple activities on the screen;
second, as noted, it naturally focuses efforts on a specific task. The Frame detailed below serves
as the interstitial tissue between activities. As a visual extention of the Journal, it enables objects to
move between activities.
For extensive detail on the various aspects of the activity interface and their design guidelines, see
the Activities section.

The Frame
The Frame: The left, top, and
right sides of the frame repre-
sents nouns: persons, places,
and things. The bottom of the
frame represents those ele-
ments that require action: ac-
tivities, invitations, and notifi-
cations.

Always Available on
the Periphery
Glancing at the previous
screen shots, you might have
noted the absence of a menu
bar or other form of persistent
interface element. Such a
persistent element reduces
the screen space available for
activities; since screen is at a

premium, we have opted to use
a frame—always on the periphery and just out of sight—to contain all of the peripheral information
that a child might need, across all views. Since the Frame persists at all zoom levels, it provides a
consistent place for those interface elements which apply to all views, including search, incoming
invitations and notifications, a clipboard, and buddies you are currently interacting with.
When activated, the Frame slides in atop the currently visible view, providing access to needed
functionality, yet quickly retracting from view once the task for which the child invoked it ends. Al-
though these transitions happen quickly, a forgiveness parameter prevents unintentional Frame
retraction in hopes of making interaction with this interface element completely natural.
See Frame for new design images.

11

http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Frame
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Frame
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Journal
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Journal
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities
http://wiki.sugarlabs.org/go/Design_Team/Designs/Frame
http://wiki.sugarlabs.org/go/Design_Team/Designs/Frame

Frame Components & Organization
The Frame is organized into
distinct logical groups.

At a high level, one can con-
sider the frame in two parts:
The left, top, and right sides of
the frame represent nouns:
things, places, and persons.
The bottom of the frame rep-
resents those elements that
require action: activities, invi-
tations, and notifications. More
specifically, each edge of the
frame is dedicated to one of
people, places, objects, or ac-
tions.

People
As previously mentioned, the
presence of others on the

mesh defines much of the laptop experience. In order to surface this at all times in the interface,
the right-hand edge of the Frame provides an easily accessible list of all the individuals a child is
collaborating with in the currently active activity, represented by their colored XOs. This has a
number of benefits. First, it provides a quick reference of the people the child is working with,
which updates as new people join and others leave. As new people arrive, they appear in the up-
per right corner, and as they leave they simply vacate
their current location. Additionally, the secondary rollo-
vers for these XO objects reveal biographical informa-
tion about them: name, age, class, interests, and even
a small photo. This makes the frame a great resource
for meeting new friends, for what better place to meet
them than in the activity shared with them?

Places
Of the various frame components, the Places category is the most abstract. However it also em-
phasizes the metaphors that the zoom levels build upon. In the upper left-hand corner reside the
zoom buttons, which can instantly transition the user among the Activity, Home, Groups, and
Neighborhood views. For clarity, the upper left-hand function buttons on the keyboard have identi-
cal icons and functionality.
On the other side of the Places edge resides the Bulletin-Board
button. Again, this button has an analogous key on right-hand side
of the keyboard's function keys. Discussed later, this button acts as
a toggle for an auxiliary layer which can provide contextual chat
and a place to share objects. This button functions within the Places bar because it acts as a
modifier to any view. In a sense, it adds an additional layer of context to any other "place" on the
laptop.
Finally, though not less importantly, this section of the Frame contains the global search field.

Objects
The clipboard has become a staple in any modern operating system. Nonetheless, its implementa-
tions have changed little, if at all, in decades. The clipboard has one "page", to which you can copy
to, cut to, and paste from, and in most cases this hypothetical page remains invisible: to see what's

12

API Reference
Package sugar.shell.view.frame
Module: ...frame.FriendsBox
Module: sugar.shell.model.BuddyModel

API Reference
Module: ...frame.ZoomBox

http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Icons#The_XO
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Icons#The_XO
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Global_Search
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Global_Search
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.frame&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.frame&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.frame.FriendsBox&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.frame.FriendsBox&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.model.BuddyModel&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.model.BuddyModel&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.frame.ZoomBox&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.frame.ZoomBox&action=edit&redlink=1

on it, you've got to paste its contents. While this isn't strictly true (On Mac OSX, for instance, an
item at the bottom of the 'Edit' menu allows you to 'View Clipboard Contents'), most users are
oblivious about viewing its contents, as one must explicitly seek it out. This basic model, while sim-
ple, often falls short of many use cases. Thus, OLPC has extended the traditional clipboard, em-
powering the user with added functionality without increasing complexity.
On the laptops, the clipboard takes the form of the left-hand edge of the frame. This region serves
as temporary storage for objects - a paper, an image, a sentence, a URL - facilitating their transfer
among activities and, perhaps more importantly, among the various zoom levels. Any type of object
that can be stored in the Journal can likewise be transported via the clipboard. A child may place
an object on the clipboard in a couple of convenient ways. First, keyboard shortcuts will provide an
interface for simple copy and paste functions in the way already familiar to us. Additionally, since
objects support direct manipulation, the child may simply drag a photo, file, or selection onto the
frame in order to copy it, and may then drag it out to paste it in another location, such as within an-
other activity, on a friend, or to a Bulletin Board. As items are placed on the clipboard, they are ar-
ranged temporally in a push-down stack, the most recent clipping appearing in the upper-lefthand
corner of the frame.
With the presence of a clipboard which contains multiple items, it becomes necessary to add a
means for selecting an active clipping as the source for any paste command. Since the usual copy/
paste keystrokes will quickly become familiar to all, any invocation of the copy shortcut will auto-
matically place the resulting clipping at the top of the stack, selecting it as the source, so that a
subsequent paste command behaves as expected. When not using these traditional shortcuts, a
single click on any object in the clipboard will select it, visibly indicating it as the new source. Addi-
tional copy commands (or drags) will continue to add elements to the clipboard stack. Once the
clipboard reaches a predefined limit, the elements at the bottom of the stack will begin to drop off
making room for the new ones. Elements may also be removed explicitly by the user via their con-
textual rollover, and a modified paste shortcut for advanced users will serve to both paste an item
and pop it from the stack at the same time.
The resulting clipboard will behave identically to those
on current operating systems, while at the same time
providing drag and drop support, clipboard history, and
previews, as well as advanced functionality for ad-
vanced users.

Actions
The bottom edge of the frame functions primarily as an activity launcher, but it also accumulates
both incoming invitations and notifications. As a starting point for instantiating activities, this part of
the frame is fairly straightforward. Whenever an activity receives a click, a colored instance of that
activity appears within the activity ring in the child's own colors, and invitations are automatically
sent as appropriate. On the other hand, anytime the child receives an invitation it appears as a
colored activity icon (in the color of the inviting XO, of course), clearly distinct from the uncolored
outlines of the activities which reside on the child's own machine. Since an invitation to join an ac-
tivity has no functional differences from starting, the invitations appropriately indicate this by their
similar form. The rollover state for these invitations allows the child to accept or decline the invita-
tion, optionally providing a reason for declining.
Notifications, the third aspect of the Actions edge of the frame, function slightly differently. While
they don't represent an activity that the child can join, they do come as messages from activities or
from the system, conveying important information about the state of the activity or system status
such as battery strength or wireless signal. Though slightly different from activities and invitations,
these notifications still require some action on the child's part, and are an appropriate addition to
the frame which provides a convenient way to access them from within any view. Just as in the
other edges of the frame, invitations and notifications organize by
time, the most recent always in the lower left-hand corner, so that
the child may handle them in a timely manner.

13

API Reference
Module: ...frame.clipboardpanelwindow

API Reference
Module: ...frame.ActivitiesBox

http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Bulletin_Boards
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Bulletin_Boards
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Starting_Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Starting_Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Invitations
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Invitations
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Notifications
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Notifications
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.frame.clipboardpanelwindow&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.frame.clipboardpanelwindow&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.frame.ActivitiesBox&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.frame.ActivitiesBox&action=edit&redlink=1

Activation Methods
The Frame has multiple activation methods.

Hot Corners
Hot corners serve as the Frame's primary invocation method. As Fitts' Law implies, the corners are
the easiest part of the screen to hit with a cursor. Moving the cursor to any corner of the screen will
instantly invoke the frame. From a corner, one can readily scroll along an edge in search of a de-
sired element. Since newly added people, objects, and invitations insert from the corners, the lat-
est invitation, clipping, or participant is always close at hand.

Function Key
In addition to trackpad-based activation, the information within the Frame lies just one keystroke
away. A dedicated key has two modes of functionality: (1) momentary presses act as a toggle, turn-
ing the Frame on and off with each press; and (2) holding the key down, the Frame will appear on
screen until release of the key. This latter method provides a quick way to glance at incoming invi-
tations or other system status elements for a brief moment and then return full focus to the activity
view itself.

Notification Overrides
Though rare, some urgent notifications such as low battery levels may override the Frame, auto-
matically bringing it into view without user interaction. These overrides come from the system only;
applications do not have privileges for override, although they may alert the user via standard noti-
fications.

Bulletin Boards
Bulletin boards provide a layer for
contextual chat and sharing around
any view.

Since the laptops have implicit
connectivity via the mesh network,
an additional layer of the UI has
been designed to take advantage
of it: Bulletin Boards. Taken literally,
the Bulletin Boards provide a space
for posting things.
Context is key to the usefulness of
Bulletin Boards on the laptops. A
button in the Places edge of the
Frame toggles the Bulletin Board
layer on and off, and although only
one button exists for this purpose,
each view among the various zoom

levels has its own Bulletin Board.
The scope of individuals who have access to a given Bulletin Board matches the scope of indi-
viduals that the view currently represents. For example, any items posted to the Home view Bulle-
tin Board may only be seen by the child that posted them, effectively providing a traditional desktop
environment. Likewise, anyone within the child's list of Friends may view things the child has
posted to the Friends view Bulletin Board, and all of a child's classmates and her teacher can view
her posts to the Class Bulletin Board; the Mesh view Bulletin Board provides an environment for
sharing with the entire laptop community. Furthermore, each activity has its own Bulletin Board,
providing a space for sharing files and ideas surrounding the activity itself that don't have a place
within it.

14

http://en.wikipedia.org/wiki/Fitt%27s_law
http://en.wikipedia.org/wiki/Fitt%27s_law
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Notifications
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Notifications

Spatially Contextual Chatting Interface
As a transparent layer above any view, the Bulletin Board provides a spatially contextual chatting
interface. This means that, unlike traditional forum-style threads that organize temporally, chat
bubbles may be freely positioned on screen. Discussions formulate around specific areas of the
activity beneath. Annotation-style comments open the door to a wide variety of conversational in-
teractions. In a drawing of the ocean, for instance, one conversation could be happening below the
water's surface, while another group of children discuss what kind of birds fly through the sky. In
another situation, one child could remotely assist another in learning how to use a new activity,
pointing out specific interface elements with detailed descriptions of their functionality. In a literary
application, child or teacher could proofread another child's story, correcting spelling mistakes,
pointing out grammatical errors, and sharing thoughts about specific sections of the story without
directly editing the work on the activity layer beneath.

An Environment for Sharing
In addition to contextual chats, Bulletin Boards provide a space for sharing. Any object may be
posted to a Bulletin Board for others to look at and enjoy and to pass on to others, promoting viral
sharing. The sharing environment is an integral element of all views.
In the Home view, for instance, only the child to whom the laptop belongs has access to the con-
tents of the Bulletin Board. Here, the Bulletin Board provides a convenient area for the temporary
storage of objects and activities, as well as those things kept around for quick access: tomorrow's
homework assignment, the pictures taken last week, the book the child is reading, a favorite game.
In this way, the traditional desktop that the zoom levels replaced finds its way back through the
Home view Bulletin Board. The functionality described here mimics the traditional desktop to some
extent. Note that the contextual chat bubbles are also available in the Home view, providing a
mechanism for writing "notes-to-self". The Bulletin Board metaphor emphasizes a temporary and
ever changing space for placing objects, distinctly separate from the space in which they are
stored. This may prevent the common overuse of the desktop as the primary place to store every-
thing, which limits its usefulness as a quick way to find the files that matter most at any given point
in time.
From the Friends and Mesh view, the Bulletin Board serves as a place to share interesting things a
child has found or created with friends, and the entire mesh respectively. The important thing to
remember with regard to sharing, of course, is that "Share this JPEG (or GIF or SVG or any other
picture format) file with Bob and Sue" translates to "Share this photo (or picture) with Bob and
Sue." The sharing metaphor functions much more naturally than the file transfer systems we're
used to, since file transfer really just represents a technical implementation of the more abstract
idea of sharing in the first place. Of course, children can also view the things that others have
posted as well. Moreover, as a community space, group sharing occurs naturally.
Finally, the shared space the Bulletin Boards provide take on a slightly different, yet quite powerful
meaning at the Activity level. Again, contextual to the current view, each activity has its own shared
Bulletin-board. Posts to this layer provide supporting materials for the underlying activity that other
participants in the activity may view (Or, if they'd like, keep for themselves). This actually means a
great deal, since any object at all can be shared this way, including many objects that the activity
itself may not provide support for. For instance, though one couldn't paste a song inside a drawing
(no compound document), a song posted to the Bulletin Board layer could provide inspiration for it.
Similarly, it provides a means of collecting materials relevant to the task at hand within the activity.
Rather than having 5 individuals each pasting images of a shark directly into the drawing, they
could instead post them to the Bulletin Board for others to see and discuss before deciding which
to use as a basis for the drawing. Thus, Bulletin Boards provide a space for gathering research
and supporting materials, and holding discussions around both them and the activity.

15

View Source
While Bulletin-boards provide a layer of abstraction on top of any given activity, the olpc:View
Source button allows one to look behind the activity, peeling away layers of abstraction in order to
reveal the underlying codebase which makes it tick. This feature will integrate cleanly with the
olpc:Develop activity, encouraging children to view, modify, and redistribute variations on the activi-
ties they use. Through collaboration and sharing, a garden of home grown activities will begin to
develop on the laptops, created by the children themselves.

The Journal
See Journal and Design Team/Proposals/Journal for new design images.

The Notion of "Keeping"
We believe that the traditional "open" and "save" model commonly used for files today will fade
away, and with it the familiar floppy disk icon. The laptops do not have floppy drives, and the chil-
dren who use them will probably never see one of these obsolete devices. Instead, a more general
notion of what it means to "keep" things will prevail. Generally speaking, we keep things which of-
fer value, allowing the rest to disappear over time. The Journal's primary function as a time-based
view of a child's activities reinforces this concept.
Most of us have heard the "save early, save often" mantra, largely ignored it, and incurred the con-
sequences. Sugar aims to eliminate this concern by making automatic backups. This lets the chil-
dren focus on the activity itself.
The physical analog for an Activity is paper, pencil, & writer at a desk, canvas, paint, & artist at an
easel, clay & hands at a wheel, or sidewalk, chalk, & children at a driveway. They exist as created
and modified. No 'saving' action, per se, is needed. The 'Keep' toolbar button (proposed to be
'Copy', [1]) provides the capability to replicate the current state of the Activity into a new, separately
available* Activity object in the Journal. Outside of software culture, such rapid and perfect replica-
tion has few physical analogs, and perhaps so has been a point of confusion.

* Note: The Keep(Copy) action currently produces an object that shares an ID with its
parent and so may not be opened simultaneously with its parent in the same Sugar in-
stance. (This is a bug.)

Use case: A teacher could easily prepare a series of Activities/Physics models illus-
trating the construction of a system through stages. The learning of the physical
principles could be staged into separate lessons or exercises.

Incremental backups occur regularly and are also triggered by such activity events as changes in
scope, new participants, etc. To cater to the many needs of the editing environment, activities can
also specify "keep-hints" which prompt the system to keep a copy. For instance, a drawing activity
may trigger a keep-hint before executing an "erase" operation immediately preceded by a "select
all". Of course, a child may choose to invoke a keep-hint by selecting the "keep in journal" button,
but the increasing adoption of this new concept of keeping should ultimately eliminate this.
Based on the Object model associated with files, each kept Object is, technically speaking, a sepa-
rate instance of the activity that created it. This eliminates the need "to open" a file from within an
application, and replaces the act of opening with the act of resuming a previous activity instance.
Of course, a child will have the option to resume a drawing with a different set of brushes, or re-
sume an essay with a different pen, and will so be provided with an "open with" (a different tool kit)-
style of functionality; but, no substitute for an "open" command will exist within an activity's inter-
face.

16

http://wiki.laptop.org/go/View_Source
http://wiki.laptop.org/go/View_Source
http://wiki.laptop.org/go/View_Source
http://wiki.laptop.org/go/View_Source
http://wiki.laptop.org/go/Develop
http://wiki.laptop.org/go/Develop
http://wiki.sugarlabs.org/go/Design_Team/Designs/Journal
http://wiki.sugarlabs.org/go/Design_Team/Designs/Journal
http://wiki.sugarlabs.org/go/Design_Team/Proposals/Journal
http://wiki.sugarlabs.org/go/Design_Team/Proposals/Journal
http://www.mail-archive.com/sugar-devel@lists.sugarlabs.org/msg13104.html
http://www.mail-archive.com/sugar-devel@lists.sugarlabs.org/msg13104.html
http://wiki.sugarlabs.org/go/Activities/Physics
http://wiki.sugarlabs.org/go/Activities/Physics

Deprecating Hierarchy
Temporal Organization
Along with the idea of implicit keeping, the laptops will drastically minimize the hierarchical filesys-
tem as a means for organization, replacing it with a temporally organized list of activities and
events, furthering the Journal metaphor. This drastically simplifies the auto-keeping behavior, since
it eliminates the need to specify a location in which a newly started activity should be kept; natu-
rally, the newly started activity will appear as the most recent entry in the journal.
Temporal organization functions naturally in the absence of explicit or hierarchical methods, since
humankind's intrinsic relationship to time gives them, at the very least, a relative notion of "how
long ago" something happened. By moving back through the Journal, a child can simply locate the
period in time within which she knows she made something, and then employ additional use of
searching, filtering, and sorting to pinpoint exactly what she's looking for.

Falloff
Due to the laptops' limitations in storage capacity, the potential exists for the Journal to contain so
many entries that no more may be written. However, the frequency of such occurrences is limited
by temporal falloff, which tidies up the Journal contents and keeps space available for new entries.
One might think of this as an intelligent combination of garbage collection and disk defragmenta-
tion.
The driving principle here is that of temporal granularity, derived directly from our very capacity for
human memory. Our minds, generally speaking, maintain a high level of granularity with respect to
very recent events, but only a low granularity for events from several years ago. Moreover, this
granularity tends to follow a logarithmic curve, where the past few minutes remain quite clear, the
past few hours more blurry, and by last month quite vague. When we look years into the past, only
specifically memorable events stand out in our minds.
On the laptops the policies are a bit more strict, but the principle remains the same. With a finite
amount of memory, there must exist some means of managing what's remembered, or kept; and
what's forgotten, or erased. An intelligent algorithm will assist children in identifying "forgotten" en-
tries. Taking into account how old an entry is, how many times she's viewed it, how recently she's
worked on it, how many hours she's worked on it, how many people she's worked on it with, its
tags, and even more forms of automatically generated metadata, the Journal can suggest to her
those entries which it feels can be erased. She will then have the opportunity to review those items
prior to their erasure, if she wishes, and can keep any she still feels attached to.
In a time where gigabytes have become cheap, many of us still manage to fill our hard drives. Ex-
cepting the cases of multimedia collections of audio or video files, much of that space is consumed
by files we either don't remember we ever made, or will never open again. On the laptops, where
space is precious, so too will be the objects and entries that remain in the journal years down the
road. The temporary, the experimental, the duplicate, and the unwanted files will naturally fall off
the bottom, maintaining a browsable history of those that remain important to the children.

Journal Entries
Implicit
Implicit journal entries will be the most common. These appear as the result of many kinds of a
child's interactions with her machine, but most commonly when engaging in an activity. Other im-
plicit entries might appear when she takes a photo, or receives a note from a friend, or downloads
a file from the Web. In all of these cases, the journal entry itself has a basic format which conveys
important information about the event which created it. Most importantly, the associated Object -
the photo, the message, the drawing, the story - becomes embedded within the entry. It also in-
cludes key metadata, such as its name, when it was made, and who collaborated on it.
The journal entry also provides some means to interact with it. For instance, each entry has a de-
scription field where a child can tag it with meaningful related words which will make searching for

17

it in the future a breeze. This field will automatically receive any tags that the activity itself associ-
ates with the entry. In addition to this tag field, several buttons will allow direct manipulation of the
Object, making it possible to resume the activity, place the Object on the clipboard, send it to a
friend, print it, or erase it, among others.

Note
In addition to implicit ones, children have the opportunity to create several special kinds of entries
on their own. The first of these, the Note, has the simplest form. Taking a cue from a traditional
journal, a Note entry simply provides a large text entry field. This freeform entry allows the children
to write down short descriptions of their day to day experiences, just as one would within a real
journal. Providing this layer of personalized entries further emphasizes the idea that the Journal
really does provide more than a filesystem, as an actual record of events and interactions of the
children with the laptop and with their peers.
In practice, children may also use this feature as a means of jotting down a note to themselves - a
reminder. In these instances, a simple control within the entry will turn the note into a "to-do" note.
As a to-do entry, it will have a checkbox indicating its completion status. By filtering the Journal to
show only these entries, it doubles as a basic to-do list, providing another useful tool for learning
organizational skills.

Clipping
Clippings serve a slightly different purpose in the journal. Similar in spirit to notes, a child can cre-
ate a clipping from anywhere, or from within any activity on their laptop. As an extension of the
copy to clipboard idea, clippings copy a selection - some text from a chat session with a friend, an
image from a web page, etc. - directly to the journal for safekeeping. This provides a quick and
easy way to keep a quick record of anything that you might want to keep around for future refer-
ence: a phone number, a link, a password, etc.

Event
Taking the temporal aspect of the Journal one step further, Events act like "future" journal entries.
By specifying a name for the event, a brief description, and a time, these Journal entries serve as a
basic planning system. A control within the entry also enables an audible alert, so that Events can
act as alarms. Events also tie in closely with some implicit actions of the laptops. For instance, a
child might want to go on a photo safari with her friend after school. While still in class, she sends
him an invitation to join a photo capture activity, but schedules a time of 3:00. He then receives an
invitation, as usual, but upon accepting it receives an Event entry in the journal, with a reference to
the scheduled activity, instead of immediately entering it. When 3:00 arrives, both children receive
notifications that their scheduled event is about to start, and join each other both physically outside
and virtually in the referenced capture activity.

Progress Indicator
In many cases, entries will appear at one point in time but the desired result of the entry won't be
immediate. This might occur, for instance, when downloading a file from the Web, receiving a file
from a friend, restoring a file from the server, or saving a large Object such as video or audio data.
All of these processes take some non-trivial length of time, and so when necessary, Journal entries
will provide a progress indicator stage. When the download, transfer, or task begins an entry will be
created in the journal to indicate that. This entry will include a progress bar with estimated time un-
til completion; once completed, it will transition to a standard entry. This makes the Journal a con-
sistent place to keep track of progress, and also provides an easy means to pause and resume
transfers, which will prove extremely useful when in areas with intermittent connectivity.

The Power of Metadata
Despite the flatness of the Journal, finding past entries shouldn't prove difficult thanks to a tagging
structure built from the ground up for the laptops. By associating relevant descriptive words with
each journal entry, searching for an entry becomes as easy as describing it. These descriptions will
manifest in two ways, tagging and metadata. The former provide a straightforward manner for the

18

children to describe and organize their stuff, while the latter provides a more technical means by
which activities can associate relevant data and tags with all Journal entries they create.

Tagging
Tagging will become a fundamental process for all types of data and activities on the laptops. For-
tunately, children have a natural inclination to describe their world and the things they see and do.
This actually aids kids in learning, as they will enjoy describing the drawing they've made, the sto-
ries they've written, or the composition they produced, and can learn new vocabulary in doing so.
Of course, the kid-like desire to describe things doesn't detract from the usefulness of this tag-
based system as they grow older.
As such an integral part of the system, the tagging interface will be exposed in various places. Of
course, as mentioned, each journal entry will have a field for tags. Likewise, each open activity in-
stance will have a tag field adjacent to its name field, so that the act of naming a particular activity
or Object becomes associated with describing it in their minds. Additionally, activities could offer
specific places within the interface for tagging to occur, such as in the description field for a photo
the child just took.

Metadata
Metadata adds an additional level of sophistication to the tagging model. Rather than thinking of
this as data about data, consider it a means of tagging tags. Metadata on the laptops will be an
extension of the basic tagging model where the tag itself consists of a key:value pair. Or, you could
simply consider a tag to be a metadata pair with a null key. Whichever way you look at it, this cate-
gorization of tags has powerful implications when it comes to organizing and categorizing data.
The Journal itself assigns a variety of useful metadata tags to entries as they appear. These in-
clude the time of the entry, its sharing scope, who participated in the activity, its size, and more.
The Journal will also keep track of other useful metadata, such as the number of times a child
views a particular entry, the number of revisions an entry has gone through, etc. Likewise, activities
will deal primarily with metadata rather than simple tags. This allows activities to define specific
parameters, or keys, that make sense for the Objects they produce, and then assign values to
those dynamically. In a music composition activity, for instance, potential keys might be beats per
minute, the key the composition is written in, the length of the track, and the composer, among
others. See the sorting section to fully understand the usefulness of this metadata within the Jour-
nal.
Of course, since tags and metadata both follow a very basic format, children can assign their own
metadata associations with Journal entries once they have enough experience simply by typing
key:value pairs into the description field.

Powerful Search, Filter & Sort
Searching
The search field provides the most direct means of locating a particular Journal entry, returning in-
stant results as the search is typed, and offering auto-completion for popular tags. In order to find
anything on their laptop, a child need merely describe it, since the tags she's associated with it al-
ready appear within its description field. Her searches also apply to the metadata associated with
the entry by either the Journal or the activity that created it, making it even easier to find things.
For simplicity, the search field will employ OR logic to all terms entered, which ensures the least
amount of confusion when used by children who don't yet understand boolean logic. As such, a
search for "orange cat" will return a list of everything orange and also every cat. Of course, any
entries tagged with both orange and with cat will match more strongly, and will automatically filter
to the top of the results. However, in keeping with a primary goal of the laptops, this won't eliminate
the possibility for more complex boolean searches. Full support for AND, OR, NOT, and paren-
thetical grouping of terms will be built into the search engine, providing advanced functionality for
those who desire to enter more complex queries.

19

Since the laptops will find themselves in the hands of many children, additional modifications to the
search algorithm will assist them as they grow. The youngest children who receive them will still be
learning how to spell, and those that can may still require some time to learn typing skills. For
these reasons, a fuzzy match algorithm will assist the children, returning some results even when
the corresponding tags don't match what they typed exactly. This algorithm is adaptive, and so as
they become more comfortable with their language and with using the technology, the extent of the
fuzziness and therefore the number of fuzzy results returned will lessen, preventing false matches
from aggravating more advanced users. Several other kinds of fuzziness could also be applied,
though such possibilities are only speculation at this point. For instance, fuzzy matches based on
thesaurus entries could turn up items tagged with "funny" even when the child searches for "hu-
morous". Likewise, translation fuzziness could return an entry tagged with "cat", even though the
child searched for "gato." These advanced fuzziness algorithms could prove invaluable in a laptop
community that has been built with sharing and collaboration in mind.

Filtering
Support for basic filtering also exists within the journal. The search and filter functionality appear
together in the toolbar, since searching could also be interpreted as filtering by tags. Additionally,
their appearance together allows an easy method for the children to visually construct their query
in a sentence-like format, with relevant parts of their query displayed as icons — just as those
within the entries themselves — for visual reinforcement.
Several fundamental filters exist. First and foremost, there is an advanced date filter, which can
only be expected in a Journal organized temporally by default. This control will present a timeline
to the child, with visual indication over the length of the timeline of the number of entries present in
the Journal from any given point in time. By expanding and contracting the selected area she can
select anything from a single day to all time, and by sliding the selection through time, she can filter
out all entries that don't lie within the specified range. Other basic filters include the activity that the
entry represent, and the activity participants.
Other available filters allow children to locate specific kinds of entries. For instance, a child may
want to view all entries that have been tagged by the Journal for possible removal when memory
becomes low. They may also want to see all their notes, or to-dos, or events. They could also show
only starred items, or in progress items, and more. The system will provide adequate flexibility for
finding anything in the Journal nearly instantaneously.

Sorting
Whereas searching and filtering provide a means of defining what entries get shown in the list of
results, sorting determines how those entries are organized. A unique approach to sorting on the
laptops makes the metadata associated with entries even more valuable. The sort bar, which the
child can expand in order to more precisely control their view of the journal, offers a popup menu
from which a number of options such as date, title, activity, size, participants, and others may be
chosen. In addition to this fixed list, a dynamic list of options also appears, providing a list of meta-
data keys that are present in the majority of the entries within the results list, the utility of which will
become apparent below.
The true functionality of the system arises from "then by" sorting. When desired, a child can specify
up to three levels of sorting hierarchy. This feature shouldn't be overlooked, since it serves as an
extraordinarily powerful means of viewing and organizing data hierarchically, even when no hard
hierarchy exists. In fact, when used to its full advantage this approach can be more useful than a
hard hierarchy, since the order of the hierarchy can be adjusted dynamically to suit the child's
needs at the time. And, in conjunction with the intelligently compiled list of metadata keys on which
to sort, children can not only find what they're looking for, but can browse through their journal in
any way that suits them. Consider, for instance, that a child filters her journal so that all of her mu-
sic appears in the results. Since nearly every song Object in her Journal has metadata keys for
artist, album, track, and year, she could sort by these keys to arrange her music collection for
browsing. Sorting by artist, then album, then track she can obtain a traditional view of her music. In

20

order to view a discography for each artist, on the other hand, she could sort by artist, then by al-
bum, then by track. Or, to see a timeline of her music, she could sort by year, then by artist.
This powerful sorting method isn't necessarily limited solely to a bunch of songs, or pictures, or
other specific type of data. Since many forms of metadata will apply across Object types, the pos-
sibilities are nearly limitless.

Implicit Versioning System
As mentioned before, the laptops automatically save, or "keep", objects in the Journal at regular
intervals. This eliminates the need for the children to constantly worry about saving, and reduces
the chances that an unexpected circumstance will cause data loss. These individual keep events
are incremental, meaning that the changes within the file are kept in a nondestructive manner.
Therefore, the Journal not only stores Objects as children create them, but also keeps track of the
revision history for each one. This allows the Journal to function as a versioned filesystem.
The space limitations on the laptop cause some concern with the mention of revision history. How-
ever, the differences between revisions will often be small. Additionally, Objects with large revision
histories provide one easy way for the journal to regain valuable space when memory becomes
tight, since it can collapse the history, storing only every few automatic revisions in addition to
those explicitly kept by the child.

Automatic Backup and Restore
Backup
In most locations where laptops deploy, a nearby school equipped with a server will provide addi-
tional functionality when children bring their laptops within range. This server has one major impli-
cation for the Journal: backup. Due to limited storage space on the laptops, children will have to
choose to erase older entries to make way for new ones. The automated backup system will en-
sure that, even once their creations leave their own laptops, they will remain available on the
school server. This process will happen in the background, fully automatically, anytime the child
comes within range and bandwidth allows. Her Journal will keep track of which entries have and
have not yet been backed up, taking this into account when recommending items for removal.

Restore
The backup service provided by the server will allow several types of restoration, based upon the
child's needs.
Full restore functionality provides a fail-safe for the children. Though the ruggedness of the laptops
should minimize the need for a full restore, any event which causes permanent loss of any or all
data on a laptop can be recovered from nearly completely from the backup files. These files also
provide a means of restoring the child's settings and data should they for any reason ever need a
new laptop. In practice, this is a temporal restoration, recovering all files stored on the backup
server within a given time period from the present.
The backup server will also provide partial restores, which allows children to select individual ob-
jects and entries to recover. Any recovered items will appear as a new Journal entry on the date of
recovery. This form of restoration will occur with much greater frequency, purposed mainly to re-
store an accidentally deleted entry from a week or so ago, while flexible enough to restore any en-
try ever backed up on the server.
In addition to these hard restoration methods which physically copy the data back onto the chil-
dren's laptops, the server will also provide soft restore functionality, allowing children to browse
through the backups on the server directly from within their Journals. Since this browsing function-
ality will integrate cleanly with the entries stored on their own laptops, the children will be able to
search, filter, sort, and view anything they ever entered without having to think about the technicali-
ties of the data's physical location. Apart from a visual indication within the entry, the experience of
browsing through backups will be seamless. Using the temporary restore method, children can
browse through their past creations, much as we might browse through a photo album. They will

21

have full ability to resume any instance of an activity, to view its contents. A copy-on-write approach
will be taken, so that if a child attempts to modify a temporarily restored item, it will behave identi-
cally to a partial restore for that Object, writing the modified revision into a new journal entry.

Global Search
Coming soon...

Activities

A New Model
We make a distinction between the typical single-application, multi-document model of computing
and the Sugar full-screen activity interface, where each object (document) runs within its own in-
stance—multiple instances of a given activity may run in parallel. Activity instances within Sugar
provide a way to handle files as objects; each instance may represent a different group of collabo-
rating individuals, and creating a new instance of the Draw activity implicitly creates a new draw-
ing. "Open" and "Save" actions are relegated to a Journal interaction; In fact, we strengthen this by
replacing the notion of "Saving" with the more general notion of "Keeping" things. To "open" a
drawing you've kept, you simply resume it.

Starting Activities
Activities appear in the Actions section of the frame; starting an activity amounts to creating an ac-
tive instance of it, represented in the activity ring. They can be started with a single click. An activity
may also be directly manipulated; dragging an activity into the ring will also create a new active
instance of it.
Visual cues differentiate between instances of an activity and the activity icon in the frame. Specifi-
cally, any activity installed on the system and appearing in the Actions edge is drawn as a white
outline stroke, with no fill. Upon instantiation the icon receives a fill; both stroke and fill colors
match the XO colors of the child who created it.

Private Activities
Newly created activity instances inherit the scope of the view in which they are created. This
means that any activity started from the Home view begins as a private one by default. Children
may later share private activities, opening them up to friends, classmates, group members, or any-
one on the mesh through an explicit invitation.

Shared Activities
Since newly created activities inherit the scope of the view, any activity started directly from the
Friends Group view will be open for her friends to participate in. This applies to any group the child
belongs to as well. Implicit invitations are sent to all of the members of the currently selected
Group, alerting them of the activity. Likewise, any activity started from the (unfiltered) Mesh view
will be open to everyone on the mesh, although invitations are not sent.
The views provide scope for instantiating activities. For finer granularity, the search (located in the
Frame) provides an incremental filtering system that enables arbitrary selection of scope. As a
query is entered into the search field, the view—Friends or Mesh—dynamically updates to reveal
the matching selection. Matches remain in color, while those filtered out appear with a white out-
line. The filter terms apply parameters such as the names of activities, the types of activities, the
names of individuals, and the interests of individuals. For instance, a child could search for anyone
who likes games before starting a new game of Memory, or everyone in the same grade in a class-
room setting, or a specific group of individuals by name. The results of the query become the

22

http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Resuming_Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Resuming_Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Icons#Activity_Icons
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Icons#Activity_Icons
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Icons#Strokes_.26_Fills
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Icons#Strokes_.26_Fills
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Sharing_Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Sharing_Activities
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Invitations
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Invitations
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Implicit_Invitations
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/Activities/Activity_Basics#Implicit_Invitations

scope for any new activity instance, and all XOs within that scope receive implicit invitations when
an activity begins. These groupings may be saved as groups for future use.
Once a shared activity begins, the child who initiated the activity is taken into Activity view. Others
who received invitations won't join the activity until they accept the invitation; white outline place-
holders for their XO icons appear in the People section of the frame to indicate their potential arri-
val. If they accept an invitation, their XO fills with their colors; if they decline the outline disappears.

Joining Activities
Children will often find themselves joining activities already started by others. Activities can be dis-
covered through search; searches may specify an activity name, an activity type, interests of indi-
viduals, and names of individuals. For instance, one could search for all activities that relate to mu-
sic, or all activities that have participants who like camping, or all the active chat activities, or a few
specific people by name. Once an appropriate activity is found, a single click on the activity icon
will engage it.

Sharing Activities
Activities may begin as private, or restricted to a small group of individuals. There may be occasion
to open up activities to a broader scope. For instance, a class may break into groups to work on a
project within private group activities. At the end of the session, all groups may wish to open up
their activities to the rest of the class for discussion and critique. Through selection in the activities
contextual rollover, one may set the scope of children who may join an activity to one of Private,
Mesh, or any specific Group to which she belongs, including her class, her friends, and potentially
others.
A child may lock activities in a similar manner, tightening an activity's scope. Participants must
leave on their own volition or at the request of others within the activity before locking it.

Switching Activities
The activity ring indicates the activities currently running on the laptop. From the Home view, a sin-
gle click on any activity in the ring will select it as the active activity, automatically transitioning back
to its Activity view. Keyboard shortcuts enable quick transitions among open activities.

Ending Activities
Ending an activity happens as easily as starting one. To complete the metaphor, dragging an activ-
ity out of the ring will end it. Selecting the End action in the activities contextual rollover will do
likewise. Note that ending a shared activity—even one you started—does not necessarily "close" it.
An activity instance remains active on the mesh as long as one or more individuals remain as par-
ticipants.

Resuming Activities
In lieu of an "Open" command, one may simply resume an activity. If a drawing resides in the Jour-
nal, then resuming it will automatically restart the Draw activity, allowing modifications to that draw-
ing. Due to the emphasis on collaborative activities, special consideration has to be given when
resuming them; An activity fingerprint identifies a particular instance on the mesh. Resuming an
activity implicitly invites all others who at one point participated in its creation that also remain
within its currently specified scope. Additionally, cases may arise when an activity being resumed is
already active on the mesh. In such cases, the child will automatically join the already active in-
stance.

Activity Robustness
All activities designed for the laptop should place a strong emphasis on robustness. Two essential
robustness considerations are input and network.

23

Invitations
Invitations perform an essential functionality in a computing environment that so strongly empha-
sizes collaborative learning and creation. For this reason, two forms of invitations are present in
the OS: explicit and implicit.

Explicit Invitations
Explicit invitations are used to invite specific individuals into already active activities. The ability to
send explicit invitations to others serves particular use when in a private activity, be it a private
group or a solitary one. In these cases, an explicit invitation can extend the group by including one
or more specific individuals, without opening up the activity to a broader scope.
A child may initiate an explicit invitation either from within the activity itself or by identifying an indi-
vidual or group in either the Groups or Neighborhood views.

Implicit Invitations
Implicit invitations do not require specific action on the part of the child. These invitations go to the
appropriate individuals whenever actions suggest it, such as when starting an activity from the
Groups or Neighborhood views. All individuals within the activity's scope receive implicit invitations
to join. When an activity is resumed, those who participated previously receive an invitation.

Receiving Invitations
Incoming invitations appear within the Actions section of the Frame, adjacent to the installed activi-
ties; they are rendered in the color of the inviter. Rollover reveals both the name of the inviter as
well as the name and type of the activity. On extended rollover, the options to accept and decline
appear. There is an optional message back to the inviter upon declining an invitation.

Notifications
Notifications behave similarly to Invitations; they also appear in the Actions edge of the frame.
However, unlike invitations, which are sent from people on the mesh, Notifications come from ac-
tivities or directly from the system. As new notifications come in, they form a queue, with the most
recent in the lower left-hand corner for quick access.

Sticky Notifications
By default, notifications will remain in the frame until the child acknowledges them.

Transient Notifications
Transient notifications alert a child when they arrive, but as they contain information that has a lim-
ited lifetime, they expire. Thus Activities may specify timeouts on notifications, after which they will
automatically disappear.

The Activity Bundle
Activities will exist in the form of bundles. These bundles will manifest as groups of related files—
source code, images, documentation, etc—that compose a given activity. As self-contained mod-
ules, the distribution and installation of an activity distills to a simple transfer of the activity bundle
to a laptop. Properties stored within a bundle provide information about its version and its crea-
tor(s).

API Reference
Activity Bundle technical specifications

24

http://wiki.sugarlabs.org/go/Development_Team/Almanac/Activity_Bundles
http://wiki.sugarlabs.org/go/Development_Team/Almanac/Activity_Bundles
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Frame#Actions
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Frame#Actions
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Frame#Actions
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Frame#Actions

Bundle Types
OLPC will support a signed "official" bundle type. Signed bundles have been tested and verified by
an authority such as laptop.org or any other organization through which children obtain bundles in
some official capacity, such as a country's official repository. This system may support a trickle-up
metaphor through which locally signed bundles propagate upward to higher authorities, allowing
wider distribution of newly created activities and content to other regions and countries.
Personal bundles, on the other hand, have been created or modified by an individual among the
laptop community. A personal bundle isn't signed or verified by an official source; instead, it is
signed or watermarked with the identity of the individual who modified it. This watermark remains
attached to the bundle throughout its lifetime. As others modify or change it, their own watermark
should be appended to the bundle. This gives a personal bundle some sense of origin and a
means through which it is possible to give credit or responsibility.

Bundle Versions
Bundles always automatically update to the latest officially signed version present within the lap-
top's network. If a child's friend has a more recent version of a signed bundle, Sugar will download
that newer version and update the laptop automatically. This requires bundles to communicate a
unique bundle identifier and version, as well as their signature if they have one.

Naming Activities
OLPC aims to provide a platform which encourages expression through creation. In support of this
idea, activities — not applications — provide the main tools through which objects are created.
Whenever possible, activities should be named with descriptive verbs, or suitable pseudo-verbs, in
order to emphasize their function as things you do.

Activities as Verbs
Activities are verbs. As such, the phrase "<activity> with my friends" should make sense. For in-
stance "draw with my friends," "browse with my friends", "chat with my friends" and "edit text with
my friends" all make much more sense than "text editor with my friends." Similarly, "Tam-tam with
my friends" reads as an action, even though you may have never heard "tam-tam" before. Treating
the activity as an action (verb) and not as a thing (noun) maintains the interaction model that the
laptop tries to embody.

Meaningful Naming
Of course, we don't mean to impose arbitrary limits on the types and number of activities that the
platform has the potential to support. Just because there is a "Draw" activity doesn't mean that one
must either find a synonym or come up with a different activity. (However, note that the former can
be a very reasonable approach, as a synonym might actually have subtly different connotations
which better support the concept of the activity. For instance, drawing and painting typically imply
two very different types of media, dry and wet respectively. Much is gained when these types of
differences are reflected in the nature of the activity, and are not simply arbitrary.) In some lan-
guages, verbification has become common practice in speech. Many words function as both nouns
and as verbs, indicating the action of creation and the resulting product of that action; additionally,
many nouns can also function as verbs. For instance, if you speak English, you've probably "Goo-
gled" something in the past few days. Many nouns, not just proper ones, can be used in a similar
manner.
Additionally, while straightforward names can simplify the interface and provide a means of under-
standing an activity before entering it, compound names may also be used. Providing a modifier,
such as an adjective, can personalize the activity and provide that extra bit of information which
differentiates it from similar ones. For instance: "Finger Paint." However, please refrain from resort-
ing to simple one-upmanship in the form of "Super Sketch" or "Ultra Paint," especially if another
activity already uses the modified base. Such names only serve to indicate superiority, and don't
provide any useful feedback about the particular activity which makes it unique or useful. Providing

25

http://en.wikipedia.org/wiki/Verbing
http://en.wikipedia.org/wiki/Verbing
http://en.wikipedia.org/wiki/One-upmanship
http://en.wikipedia.org/wiki/One-upmanship

a meaningful name goes a long way to making the activity intuitive and enticing to the children us-
ing it.

Credit
Finally, please avoid integrating the name of yourself or of your company into the name of your ac-
tivity. As an open-source initiative we fully believe in giving due credit, but the name of your activity
doesn't provide the appropriate place for accreditation.

Activity Tags
Tags provide additional information about the context of a specific activity, enabling powerful
searching on the Mesh for generalizations or categories of activities. For instance, searching for
"game" should return the "Memory," "Chess," and "Tic-Tac-Toe" activities. Likewise, searching for
"drawing" should return any activities that relate to drawing, painting, sketching, etc.

Obtaining Activity Bundles
Officially signed bundles should spread freely across the mesh Neighborhood; their information
and the bundles themselves should be readily available to anyone within communication range.
Installation and updates should occur implicitly.
While personal bundles are slightly more restricted, current thinking would limit distribution of per-
sonal bundles amongst a child's friends only. This should help limit the destructive power of a mali-
cious bundle from spreading across the Neighborhood, yet still allow people to open up their bun-
dle source code, improve it and share it explicitly.

We may wish to allow distribution to any Group rather than just to Friends, so that if
a child wrote an activity that is useful for her whole class, she does not have to add
everyone to her Friend group, breaking the metaphor.

Implicit Bundle Sharing
Implicit bundle sharing will automatically update signed bundles on a child's machine when the
network allows. If a child finds an interesting activity running on the mesh Neighborhood, she will
implicitly download and install the activity on her own machine when she joins that activity. Addi-
tionally, this provides a means of obtaining completely new bundles, since she doesn't necessarily
need to have an older version of the bundle installed prior to joining. Of course, since there will
likely be some download time before the activity can begin, a visual indication of the progress will
appear during launch.
In cases where a child joins a group running an older version of an activity she has a newer ver-
sion of, the same will happen. Her laptop will silently download the older version of the activity so
that when she joins, her active instance is service and communication level compatible. However,
in such instances the old version will not overwrite the newer version, and will instead remain a
transparent detail for compatibility reasons. The newer will remain present on her machine, so that
future activities which she initiates begin with the new version, ultimately encouraging the spread
of newer bundles.

We might need some kind of warning when joining an activity on the mesh whose bundle
is not signed...

Explicit Bundle Sharing
In the case of personal bundles, explicit sharing will be required. This results from the fact that
many children may ultimately edit and redistribute new and altered bundle versions of a variety of
software; automatic distribution of such modifications is neither secure nor efficient.
In these cases, activities may be posted to private Bulletin Boards, or distributed directly to a
child's friends through the drag and drop metaphors used elsewhere in the interface.

26

Where Are Bundles Stored?
The Journal keeps a record of all bundles on the laptop. Installing a bundle creates an entry that
indicates who the child downloaded the bundle from and its version. If she installed the bundle
through the joining of an activity, the activity entry in the journal will reference the newly updated
bundle. Of course, once stored within the journal, the Bundle will be available for activation within
the Actions section of the Frame.

Removing Bundles
The journal entry for an activity bundle also allows for its removal; it is deleted in the same way one
would remove any other item from the Journal.

Security

Coming soon...
see olpc:Bitfrost for now.

The Sugar Interface

Input Systems
Keyboard

The basic laptop keyboard layout.

Localized Keyboard Layouts
• Arabic
• Spanish (Argentinian)
• Portuguese (Brazilian)
• Nigerian
• Thai
• US International

27

http://wiki.laptop.org/go/Bitfrost
http://wiki.laptop.org/go/Bitfrost
http://wiki.sugarlabs.org/go/File:Keyboard_layout.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_layout.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_arabic.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_arabic.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_argentina.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_argentina.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_brazil.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_brazil.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_nigeria.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_nigeria.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_thai.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_thai.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_layout.jpg
http://wiki.sugarlabs.org/go/File:Keyboard_layout.jpg

Description of Keys

Key Function

View KeysView Keys

Transitions among Neighborhood, Groups, Home, and
Activity views.

Toggles visibility of the Bulletin Board for the current
view

Toggles visibility of the Frame

Hardware ControlsHardware Controls

This key will invoke a Journal search.

This slider key functions as controls for both the display
backlight (left two buttons) and the speaker volume (right
two buttons).

Special FunctionsSpecial Functions

The View Source key (gear) peels away the activity
layer, allowing children to view the underlying source
code. It is accessed in combination with the Fn and
space keys.

Grab Keys are for panning/scrolling; they are used in
conjunction with the touchpad.

The middle of the three large "slider" keys at the top cen-
ter of the keyboard is available for use by activities. The
slider can be mapped directly to a control in software.

Editing KeysEditing Keys

We've enlarged the Enter Key, and given it a visual indi-
cator that maps directly to the graphics used in the UI.
All instances of the confirm and cancel icons within the
interface will be selectable directly via the Enter and Es-
cape Keys – a relationship strengthened by this visual
mapping.

The Escape Key has a visual indicator that maps directly
to the screen graphics, complementing the Enter Key.

28

http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Neighborhood
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Neighborhood
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Groups
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Groups
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Home
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Home
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Activity
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Zoom_Metaphor#Activity
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Bulletin_Boards
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/Bulletin_Boards
http://wiki.sugarlabs.org/go/File:Key_frame.jpg
http://wiki.sugarlabs.org/go/File:Key_frame.jpg
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Frame
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/The_Frame
http://wiki.sugarlabs.org/go/File:Key_search.jpg
http://wiki.sugarlabs.org/go/File:Key_search.jpg
http://wiki.sugarlabs.org/go/File:Key_brightness-volume.png
http://wiki.sugarlabs.org/go/File:Key_brightness-volume.png
http://wiki.sugarlabs.org/go/File:Key_viewsource.png
http://wiki.sugarlabs.org/go/File:Key_viewsource.png
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/View_Source
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Laptop_Experience/View_Source
http://wiki.sugarlabs.org/go/File:Key_grableft.png
http://wiki.sugarlabs.org/go/File:Key_grableft.png
http://wiki.sugarlabs.org/go/File:Key_grabright.png
http://wiki.sugarlabs.org/go/File:Key_grabright.png
http://wiki.sugarlabs.org/go/File:Key_slider.png
http://wiki.sugarlabs.org/go/File:Key_slider.png
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Input_Systems#Softkey_Sliders
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Input_Systems#Softkey_Sliders
http://wiki.sugarlabs.org/go/File:Key_enter.jpg
http://wiki.sugarlabs.org/go/File:Key_enter.jpg
http://wiki.sugarlabs.org/go/File:Key_esc.jpg
http://wiki.sugarlabs.org/go/File:Key_esc.jpg

We've replaced the Backspace and Delete Keys with an
Erase Key. This new term more accurately describes its
functionality both for erasing a few characters of text, but
also for erasing drawings, sounds, and other objects.
(Fn-Erase deletes beneath the cursor.)

The Tab Key differs little from those on modern key-
boards. Shift-Tab functions as a reverse tab, as visually
indicated on the key.

Modifier KeysModifier Keys

The Control Key is the primary modifier for keyboard
shortcuts on the laptops. Note that the control key takes
the place of the nominally useful caps lock key on the
OLPC keyboards. The removal of caps lock was a de-
sign decision on the part of the OLPC team, however
placement of the control key in its location followed natu-
rally, since this was its original placement prior to the PS/
2, and is still widely accepted among many communities.

The Shift Key is used as a modifier for typing capital let-
ters and other "upper" characters.

The Alt Key is a multipurpose modifier. The Alt Key is
typically used to provide a related but alternative func-
tionality (often increased scope) to a Control Key. For
example, Ctrl-C is copy; Alt-C is copy and erase.

The Alternate Graphics Key (alt gr) is used to select the
alternate (additional) characters printed on the right half
of the key caps. A common use is the Unicode combin-
ing characters used for inserting accent characters. (On
some keyboards, there are two separate sets of symbols
printed, e.g., Thai, Arabic, Urdu, Ethiopic, etc. In these
cases, the Language Key, described below, switches the
entire keyboard between languages.)

The Language Key, found on keyboards that have both
full Latin and a second alphabet, e.g., Arabic, Thai, Urdu,
Ethiopic, etc., is used to toggle the entire keyboard be-
tween alphabets.

Fn is the Function Key. It is used to further modify keys;
it is used to access the View Source Key; it modifies the
arrow keys to home, end, page up, and page down; and
it is used to enable the analog slider controls.

Navigation KeysNavigation Keys

The standard Arrow Keys – up, down, left, and right –
also operate as page up, page down, home, and end
respectively when used in conjunction with the Fn Key.

29

http://wiki.sugarlabs.org/go/File:Key_erase.jpg
http://wiki.sugarlabs.org/go/File:Key_erase.jpg
http://wiki.sugarlabs.org/go/File:Key_tab.jpg
http://wiki.sugarlabs.org/go/File:Key_tab.jpg
http://wiki.sugarlabs.org/go/File:Key_ctrl.png
http://wiki.sugarlabs.org/go/File:Key_ctrl.png
http://wiki.sugarlabs.org/go/File:Key_shift.jpg
http://wiki.sugarlabs.org/go/File:Key_shift.jpg
http://wiki.sugarlabs.org/go/File:Key_alt.png
http://wiki.sugarlabs.org/go/File:Key_alt.png
http://wiki.sugarlabs.org/go/File:Altgr.jpg
http://wiki.sugarlabs.org/go/File:Altgr.jpg
http://wiki.sugarlabs.org/go/File:Key_arabic.jpg
http://wiki.sugarlabs.org/go/File:Key_arabic.jpg
http://wiki.sugarlabs.org/go/File:Key_thai.jpg
http://wiki.sugarlabs.org/go/File:Key_thai.jpg
http://wiki.sugarlabs.org/go/File:Key_fn.jpg
http://wiki.sugarlabs.org/go/File:Key_fn.jpg
http://wiki.sugarlabs.org/go/File:Key_arrows.jpg
http://wiki.sugarlabs.org/go/File:Key_arrows.jpg

Softkey Sliders
The slider keys have two modes: "digital" and "analog." In digital mode, the discrete functions
printed on the key caps are accessed, four per key. In analog mode, accessed with the Fn key, in-
termediate key codes are enabled—there are seven positions along the slider; intermediary pos-
tions are interpolated in software, turning each of the keys into a 13-position slider.

Keyboard Shortcuts
For the purposes of development, you may want to review the detailed specifications for keys and
their codes on the Keyboard Layout page. For a complete list of agreed upon keyboard shortcuts
in the Sugar environment, at both system and activity levels, please refer to the olpc:Keyboard
shortcuts page. Following is a high level description of the types of shortcuts the available keys
should pertain to.

• ◆ CTRL (U+25C6) will be the main modifier key. It will be used to define "base" shortcuts.
For instance, ◆A will "select all" in a text editor.

• ◇ ALT (U+25C7) should be used for optional modifications (or ALTernates) to base shortcuts.
For instance, ◆S will perform a standard "keep" and ◇S could be "keep as...". ◆V is paste,
◇V is "paste and remove from clipboard."

• ⇧ SHIFT (U+21E7) can work in two ways. Its primary use would be as an inversion modifier,
such that it inverts the meaning of the base shortcut. For instance, ◆Z is undo and ⇧◆Z is
redo. ◆TAB is next activity, ⇧◆TAB is previous activity. SHIFT can also be used to create a
second set of "base" shortcuts which are less often used.

The FN key is reserved solely for system level operations, and generally for those that map to
functions which are printed on the keyboard itself.

Trackpad
The laptops employ a capacitive (finger controlled) trackpad.
Only the center region of the trackpad has capacitance, responding to a finger.

Trackpad as Mouse
The use of the finger on the central trackpad area serves as the primary input device for pointing.
Though external USB mice will work seamlessly with the laptops, their availability will be limited,
and activity designers should not expect that children will have access to them. This means that a
certain lack of precision can be expected when moving the cursor about the screen, and activities
should not require extremely precise motion. Excessively small controls should also be avoided for
similar reasons; details on how to design interface elements reside in the Controls section.
In addition, the laptops have two buttons positioned beneath the trackpad for input. The left button
is the primary button with which elements of the interface are selected, pressed, or activated. The
right button has secondary functionality. Typically, the right mouse button invokes contextual
menus, the content of which pertains directly to the interface element the mouse is positioned over.

Trackpad as Graphics Tablet
No stylus support is currently planned for the XO.

Microphone and Speakers
The laptop has a built-in microphone and stereo speakers to allow for voice communication and
recording. You may integrate audio functionality directly into your activities by requesting access to
this hardware in the Functional Manifest. There are also an external microphone and speaker
jacks.

Need a section on using sounds in activities; particularly in the background...

30

http://wiki.laptop.org/go/Keyboard_layouts
http://wiki.laptop.org/go/Keyboard_layouts
http://wiki.laptop.org/go/Keyboard_shortcuts
http://wiki.laptop.org/go/Keyboard_shortcuts
http://wiki.laptop.org/go/Keyboard_shortcuts
http://wiki.laptop.org/go/Keyboard_shortcuts
http://wiki.laptop.org/go/USB_peripherals
http://wiki.laptop.org/go/USB_peripherals
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls

Camera
The laptops have built-in cameras to allow for still photography and video recording. You may inte-
grate camera functionality directly into your activities by requesting access to this hardware in the
Functional Manifest.

"Hand-held" Mode
The laptops feature a hand-held mode of operation in which the screen swivels around 180 de-
grees and folds flat, similar to a tablet PC. In this mode, the screen covers the keyboard and track-
pad; however, the microphone and camera, mounted within the display bezel, remain available for
use. Additionally, bezel-mounted controls provide auxiliary input suitable for the activities that
Hand-held mode is designed to support: reading an eBook, playing games, etc.

Energy Saving Benefits
The laptop is engineered for extreme operating efficiency—a goal furthered by Hand-held mode.
The CPU can be suspended while still displaying on-screen graphics. While reading an eBook,
since the screen need only be updated when a page is changed, the time spent reading any given
page requires no use of the CPU. The screen can run in reflective (daylight) mode—with the back-
light off—for additional energy savings. These factors combine to create an extremely low-power,
energy-efficient machine; Hand-held mode provides a usage scenario where maximal energy sav-
ings can be attained.

Implementing Hand-held Controls
Unlike a typical tablet PC, the OLPC laptop does not have a touch-sensitive screen. Primary user
input comes from two bezel-mounted button sets: the D-pad (directional pad), which has 8 direc-
tions of articulation; and the button controller, which houses 4 discrete buttons (labeled ◯, ╳, △,
▢, on the B1 machine).

The Directional Buttons
The D-pad should not be, in general, used to move a cursor around the screen— in fact, the cursor
will hide by default in Hand-held mode. Instead, it should be used for more discrete operations,
such as flipping through pages, scrolling a view, or jumping to focusable elements on screen.
When an interface necessitates focusable elements, these should be visually apparent and ar-
ranged in a natural order. In most cases, "natural order" will mean scan-line order, or the way in
which one reads a page of text, but this may adapt to suit the needs of the activity. For instance,
some activities may opt to scan first by column, then by row; some may use a clockwise ordering
some may even zig-zag across the screen. All of these arrangements are acceptable as long as
their orderings logically follow from one to the next according to the visuals provided on screen.
Specific activities may in fact benefit from a more traditional cursor. Some games, for instance,
may require one. To support these cases, the cursor may be explicitly shown. However, these in-
stances should be carefully considered, since in many cases a cursor will provide a simple yet in-
efficient solution to a problem for which a better one exists.

The Controller Buttons
Generally speaking, the controller buttons can act either as standard event triggers, or as modifier
buttons to the target of the D-pad controls. A common use for standard buttons is as select and
cancel buttons. In such instances, the ◯ button should always represent confirmation, selection, or
forward progress, while the ╳ button represents cancel, escape, or backward progress. Adhering
to these guidelines will make navigation of Hand-held interfaces consistent.
When used as a modifier, the visuals on screen should clearly indicate which of the directions—up,
down, left, right—perform actions, and those actions likewise should be clearly indicated. For in-
stance, in the eBook, holding down ∆ displays an overlay listing the book's chapters, and the up/
down arrows will have focus within this list while the modifier key remains pressed. The currently

31

selected chapter appears in the center of the screen, and up and down arrows above and below
the selected chapter clearly indicate how to scroll through the list. When activities implement a
combination of both standard and modifier buttons, we encourage ╳ and ◯ for standard, and △
and ▢ for modifiers, since the former two are easier to hit with natural finger placement.

Built-in Hardware in Hand-held Mode
Both the camera and microphone reside within the display bezel, and as such remain available for
activities to use within Hand-held mode. The important trade off to consider before using the cam-
era or microphone is that of energy efficiency: while the laptop conserves energy in Hand-held
mode, continued use of either of these two devices requires constant CPU usage, virtually elimi-
nating the benefits. Therefore, do not simply integrate these hardware components unless they
provide a fundamental service to your activity—but don't let this deter you from doing so where ap-
propriate.

Screen Rotation
While in Hand-held mode, the laptops support screen rotation; by pressing a small button on the
bezel of the display, the interface will rotate 90 degrees to provide a portrait layout of the currently
active activity. Just as any activity can implement Hand-held mode, those which can benefit from a
vertical aspect ratio may also implement this feature, and we encourage developers to take advan-
tage of this functionality. The Read activity serves as a prime example of the usefulness of such a
feature, since a vertical layout is well suited to displaying a single page from a book. This is just the
type of activity one might want to do in Hand-held mode, and by providing two orientations a
greater number of use cases can be covered.
In the current revisions of the laptops, its important to note that the buttons for interacting with
Hand-held mode are slightly less accessible when the laptops are held vertically. For this reason,
activities that require heavy or frequent use might not be best suited for this mode. However,
OLPC is working hard on introducing touch-screen technology in the near future, which will nearly
eliminate the dependency on the physical buttons, expanding the possibilities as every activity can
take advantage of screen rotation. Therefore, even if screen rotation doesn't make sense for the
first version of your activity, please construct your interface in such a way as to allow future adapta-
tion to this new and potentially useful functionality.

Layout Guidelines
The Grid System
In keeping with the simple, flat visual style of the Sugar interface, we have designed all of the inter-
face elements on a straightforward grid system. The system functions like a basic floorplan which
allows interface elements to tile neatly within its boundaries. The grid consists of a 16x12 array of
square tiles.
The diagram below shows the screen dissected into cells. Furthermore, the cells highlighted in
blue indicate the areas suitable for activity toolbars. Note the exclusion of the corners, which are
reserved for the hot corners which invoke the frame. In order to prevent accidental invocation, no
buttons should be placed in these locations. Though all edges of the screen are suitable for placing
toolbars, we recommend that the top and left edges of the screen serve as the primary location for
them unless circumstances specifically suggest an alternative. Conforming to these guidelines will
both make the variety of activities supported on the laptop feel more consistent, and also reserves
the right and bottom edges for scroll bars, making navigation (when required) within the primary
pane much simpler. Though the grab key provides the primary means for panning, preserving
these edges for scroll bars even as visual indicators will increase usability.

32

Considering the screen at its
maximum resolution of 1200x900
pixels in luminance mode, each
square tile is 75x75 pixels in size.
Each cell is comprised of a 5x5
array of 15 pixel subcells. These
subcells provide layout guidelines
at a finer level of detail. In gen-
eral, the 3x3 subcell interior re-
gion is icon-safe.

Icons
Categories of Icons
The XO

The icons which represent People have special status on the laptops. Referred to generally
as the XOs, they represent the children and their laptops on the mesh Neighborhood, and
furthermore represent the OLPC project and its goals to place a laptop in the hands of
every child. Each child will select a stroke and fill color for their XO, and their chosen colors
will then apply to the icons of any Activities or Objects they create.

Activity Icons
Object Icons

33

http://wiki.laptop.org/go/Image:xo_s.png
http://wiki.laptop.org/go/Image:xo_s.png
http://wiki.laptop.org/go/Image:clipping.png
http://wiki.laptop.org/go/Image:clipping.png
http://wiki.sugarlabs.org/go/File:Grid_cell.png
http://wiki.sugarlabs.org/go/File:Grid_cell.png

Action Icons

Active vs. Inactive Icons
Many instances may arise in which some elements of the interface are inactive. Sugar specifies a
consistent visual style to represent the concepts of absence and inactivity. Inactive elements are
buttons that are not currently actionable, or controls that are temporarily disabled. Absent elements
are object icons that represent people or things which aren't actually present at the moment; for
instance, an incomplete download, or an invited friend who hasn't yet joined the activity.
Generally, interfaces represent such inactivity through grayed out imagery. Of course, since the
laptop also operates in grayscale mode, such a color distinction must not be used under any cir-
cumstances. Instead, Sugar will take advantage of the vector graphics used for rendering objects
and buttons by rendering inactive ones as a white outlined stroke, with no fill color.

Active
Inactive

Icon Design Guidelines
Icon Format
All icons designed for use in Sugar must be provided in SVG format. Since all icons exist as vec-
tors, dynamic scaling and coloring of the icons occurs without any degradation. This allows variably
sized representations of particular icons to exist depending on context in the interface. Additionally,
this provides support for dynamic coloring of activity and object icons based upon a child's chosen
XO colors.

Icon Sizes
Icons should be developed and saved at Standard (S) size, though
their actual size and appearance in the interface may change dynami-
cally. When developed at standard size, icons should fit loosely within
the 3 x 3 icon-safe subcell of a standard 75px grid cell, as specified in
the layout section.
Notice that when the interface scales your icons, strokes do not nec-
essarily scale proportionally to the overall icon size. This ensures that
the stroke weight remains visible enough at all sizes to convey its
weight and color, but it may also limit the granularity with which you
use strokes, which could begin to blend together at smaller sizes. The
following chart relates the various icon sizes to their corresponding

scale factors and stroke weights. We strongly suggest that you try rendering your icons at XS, S,
and M sizes in order to tweak their appearance for optimal legibility.

Icon Size Comparison ChartIcon Size Comparison ChartIcon Size Comparison Chart
Icon Size Scaling Factor Stroke Weight

XS 0.5 2.25px
S 1.0 3.5px
M 1.5 4.0px
L 2.0 4.5px
XL 2.75 6.0px

34

http://en.wikipedia.org/wiki/SVG
http://en.wikipedia.org/wiki/SVG
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Layout_Guidelines
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Layout_Guidelines

Strokes & Fills
All icons render in two colors: stroke and fill. The actual stroke and fill colors that an icon renders in
are determined by the children, since they correspond to the colors they have chosen for their
XOs. As such, the colors in which you choose to save your icon are arbitrary. However, note that
any fills that have the same color as your strokes will dynamically take on their color when ren-
dered.
All strokes within an "S" activity icon must have a line weight of 3.5px. All icons should have a pri-
mary fill which represents its overall shape. In addition, any number of supplemental strokes and
fills may be used; not all strokes within an icon must have fills, and not all fills must have strokes.
More detailed instructions for making icons can be found here.

API Reference
Module: sugar.shell.view.stylesheet

Colors
Imbuing Color with Meaning
Sugar treats color differently from the typical UI: colors used in the interface represent the individu-
als who are interacting within the mesh, not the activities or objects they are using. Children per-
sonalize their laptops and their presence on the mesh by selecting a dual-tone color scheme. All of
the activities, objects, and comments belonging to a child take on her own colors—even when they
appear on the laptops of other children on the mesh—forming a visual identity that supplements
her name and attributes.
This color treatment extends even within activities. For instance, in the Web activity a link-sharing
feature encourages children to browse the web in groups, sharing interesting or useful pages with
each other. Each URL object posted for the others to view appears in the colors of the child who
posted the link. Similarly, chat bubbles on the Bulletin Board take on the children's colors. Like-
wise, any object, text, or other interface element within your activities that corresponds to a particu-
lar child should be rendered in this manner. When the display runs in grayscale mode, this colored
visual identity is less apparent. However, significant differences in value, according to the Munsell
System, ensure that the XOs retain a level of visual distinction even in the absence of color.
To maintain a degree of purity to this system, interface elements, buttons, and other icons that be-
long solely to the activity and not to any particular child should remain in grayscale to the extent
possible. While removing color as a primary visual clue may seem counter-intuitive, it does en-
courage the icon's form to clearly indicate its function. Since the laptops will also run in grayscale
mode, clearly distinct shapes become essential in the absence of chroma information, and so limit-
ing activity icons to grayscale by default ensures compatibility in both modes. Additionally, keep in
mind that the traditional method of "graying-out" inactive buttons and controls simply will not func-
tion on the laptops and must be avoided. Instead, please adhere to the guidelines for inactive
icons.
See OLPC:XO colors for the full list of defined and approved XO colors.

35

http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.stylesheet&action=edit&redlink=1
http://wiki.sugarlabs.org/index.php?title=Sugar_Architecture/API/sugar.shell.view.stylesheet&action=edit&redlink=1
http://wiki.sugarlabs.org/go/Development_Team/Almanac/Making_Icons
http://wiki.sugarlabs.org/go/Development_Team/Almanac/Making_Icons
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Icons#Active_vs._Inactive_Icons
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Icons#Active_vs._Inactive_Icons
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Icons#Active_vs._Inactive_Icons
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Icons#Active_vs._Inactive_Icons
http://wiki.laptop.org/go/XO_colors
http://wiki.laptop.org/go/XO_colors

Contrast in the Munsell Colorspace
The basic color scheme for the laptop is constrained by the need to work in both color (backlight
mode) and grayscale (reflective mode); thus we have chosen guidelines that ensure at least some
achromatic contrast under all conditions. Further, sustained legibility of text is accomplished by a
combination of colors whose achromatic contrast is large and whose chromatic energy is of low to
moderate level. For this reason, we are striving for achromatic contrast of at least two
OLPC:Munsell value steps.
The default value for the Frame is N2.5; the default value for the background is N9. Therefore, to
maintain sufficient contrast, the line values for icons that appear on both the Frame and the back-
ground should range between N5 and N7. The interior fill of those icons should maintain achro-
matic contrast with the line value, e.g., the fill color for an icon with a line value of N5 should be
either ≤N3 or ≥N7.

Munsell Value StepsMunsell Value Steps Text Against Default Laptop ColorsText Against Default Laptop Colors

Color Line value 5 Frame (N2.5) Background (N9)

N10 delta 5 value steps delta 7.5 value steps delta 1 value step

N9 delta 4 value steps delta 6.5 value steps

N8 delta 3 value steps delta 5.5 value steps delta 1 value step

N7 delta 2 value steps delta 4.5 value steps delta 2 value step

N6 delta 1 value steps delta 3.5 value steps delta 3 value step

N5 delta 7.5 value steps delta 4 value step

N4 delta 1 value steps delta 1.5 value steps delta 5 value step

N3 delta 2 value steps delta 0.5 value steps delta 6 value step

N2 delta 3 value steps delta 0.5 value steps delta 7 value step

N1 delta 4 value steps delta 1.5 value steps delta 8 value step

N0 delta 5 value steps delta 2.5 value steps delta 9 value step

Fonts
DejaVu LGC Sans

Sizes
The font used in Sugar menus

The OLPC display is 200DPI;
therefore one point—1/72 inch—is
just less than 3 pixels (2.78 pixels).
We are settling on a default font
size of 7pts. for the Sugar UI (using
DejaVu LGC Sans). It is quite legi-
ble. This translates to a font size of
approximately 19.45 pt in Adobe Illustrator, which bases its units on the traditional 72DPI display.
For the purposes of preparing activity GUI mockups, you must always remember to make the con-
version to the laptops' display resolution by multiplying by a constant factor of 0.36.

36

http://wiki.laptop.org/go/Munsell
http://wiki.laptop.org/go/Munsell
http://dejavu.sourceforge.net/wiki/index.php/Main_Page
http://dejavu.sourceforge.net/wiki/index.php/Main_Page
http://dejavu.sourceforge.net/wiki/index.php/Main_Page
http://dejavu.sourceforge.net/wiki/index.php/Main_Page

We will be looking at other faces, e.g., Arabic and Thai, and also looking into a large-type version
of the interface for the younger children.

Readability
Due to the unique design of the OLPC display, particular techniques for text rendering will provide
much better results than others. The dual mode display has a resolution of 1200x900 (200 dpi) in
luminance mode, but only ~800x600 (133 dpi) in chrominance mode. Therefore, unless they are
sufficiently large, fonts rendered with luminance and no chroma will appear sharper and more
readable.
Additionally, the display has higher resolution in black pixels than in white pixels. This results from
the fact that each pixel has a color part which contains either red, green, or blue information. In or-
der to create white, red, green and blue parts must all work together; when off, each of the color
parts is black on its own. Furthermore, a grey background limits the readability of the display in
sunlight. Therefore, we recommend the use of black text on a white background for best readability
of fine text, and color on white for larger print.

Toolbars

See Toolbars for new design images.

Every activity will have a "Toolbox" at the top edge of the screen. The Toolbox consists of a set of
(at least one) toolbars, individually selectable via the tabs beneath them. Placement of the tabs
beneath the toolbars themselves makes selection of tools and buttons within the toolbars easier
according to Fitts' Law, since they will remain against the screen edges where they are "un-
missable." Though this makes the tabs slightly more difficult to activate, we anticipate the fre-
quency with which these toolbars require explicit switching to be minimal, specifically due to their
contextual nature as described below.

Grouping by Context
Each toolbar will contain a logically grouped set of buttons and controls, as the name on its corre-
sponding tab suggests. Each of these sets will represent a distinct editing or control context. For
instance, the Write activity contains individual toolbars for Text, Images, and Tables. Each of these
contains a set of controls relevant to the context they relate to. In order to streamline workflow, ac-
tivities may initiate a toolbar-switch when the current editing context changes, automatically select-
ing the toolbar for the newly selected context. Clicking on an image within a report will automati-
cally focus the Image Toolbar, revealing the associated controls; Clicking back within the body text
will automatically re-focus the Text Toolbar. In this fashion, the controls visible on screen always
remain relevant to the selection, virtually eliminating the need to select most toolbars explicitly, ex-
cept perhaps to locate the "insert" button for an element for which no context currently exists.
Of course, a one to one relationship may not always exist. For instance, a selection may include
both text and image, or perhaps for some reason focus isn't within any context at all. In these
cases, it is up to the activity to decide the appropriate behavior. One suggested fallback is to switch
automatically to the Edit Toolbar, since copy and paste, as well as most other editing commands,
often apply across contexts.

Standard Toolbars
As mentioned above, every activity will have at least one toolbar within the toolbox: The Activity
Toolbar. This toolbar will provide core activity functionality and will automatically be included in the
Toolbox. Though sugar requires no other toolbars, it does provide a short list of potentially common

37

http://wiki.sugarlabs.org/go/Design_Team/Designs/Toolbars
http://wiki.sugarlabs.org/go/Design_Team/Designs/Toolbars

ones along with suggested names and controls for consistency across Activities. These are sug-
gestions, not rules, and as a developer you should feel free to ignore the suggestions when you
find a compelling case to do so. The following table suggests a standard ordering for some com-
mon toolbars. Note that the arrows indicate the relative position of the tabs, where those with dou-
ble arrows can be interspersed with custom elements as long as their relative order remains. In the
examples which follow for controls within each toolbar, the arrows should be taken to indicate
alignment within the toolbar, double arrows indicate control regions which expand to fill the remain-
ing space.

< Activity < Edit < Text > < Image > [Custom Toolbars] Format > View >

Activity Toolbar
Always the first of the tabs, the Activity toolbar will remain consistent in every activity, providing a
place to name and tag the instance, set preferences, share within the mesh, or stop (close) the ac-
tivity, among others. This toolbar will always have focus when a new activity instance is created,
encouraging the children to provide a name and any related tags. An API will allow developers to
associate various palettes with some of the buttons which reside in the Activity toolbar, such as
preferences.

Edit Toolbar
Though not automatically included within the Toolbox, we anticipate nearly every activity will have
an Edit Toolbar, since nearly every activity should at least allow copying if not pasting as well.
Likewise, we are strongly encouraging every activity to support complete Undo/Redo functionality,
which should also reside within the Edit Toolbar. Finally, the edit toolbar will also provide a common
interface for performing find operations on any text within the activity. Of course, activities should
only include those functions which pertain to them, and additional editing tools may be added to
the toolbar as necessary.

< Undo < Redo < Copy < Paste [Custom Controls] Find >

Undo/Redo: The undo/redo commands have extremely high importance on the laptops, since their
presence encourages creative exploration without the fear of unrecoverable changes. They should
function in a manner chosen by the activity, and although that manner should reflect our current
expectations, the collaborative nature of most activities complicates the matter to some extent. A
broad approach to managing collaborative undos requires a general notion of collisions between
editing events. The AbiCollab tools which make the Write activity possible define this idea in detail
in relation to text-based editing. The overall concept applies generally: For instance, a collision in a
drawing activity could mean the collision of the bounding boxes of two drawn shapes. The secon-
dary rollovers for the "undo" and "redo" buttons contain "undo all" (essentially revert) and "redo all"
functionality. When supported, these controls should be the left-most item in the toolbar.
Copy/Paste: Sugar has a fully featured clipboard within the Frame, and as such we want to en-
courage children to copy and paste text, images, or anything else both within and between activi-
ties freely . The copy/paste, reuse, reorganize, modify, and share approach is core to the educa-
tional and creative experience that the laptops are designed for. We've simplified the paradigm,
eliminating "cut" command from the top level editing commands. The distinction between "cut" an
"copy" can seem unclear to those unfamiliar with computing, and so we've chosen to embed "cut"
functionality in the secondary rollover beneath the "copy" button, and called it "copy and erase."
When present, these controls should be left-aligned, immediately following the undo/redo com-
mands.
Find/Replace: Wherever

38

http://www.abisource.com/twiki/bin/view/Abiword/AbiCollab
http://www.abisource.com/twiki/bin/view/Abiword/AbiCollab

Text Toolbar

< Bold < Italic < Underline < Color Selector Font Size > Font > Alignment >

Image Toolbar

< Insert
Image

< Rotate
Left

< Rotate
Right < Width < Height [Custom Image Controls]

View Toolbar

< Zoom
Out

< Zoom
In

< Show
Grid

< Show
Rulers [Custom View Controls] Hide Tool-

box >

Custom Toolbars

< Insert
Object [Custom Controls] Add Book-

mark >

Inserting Objects
Many custom toolbars will provide controls useful in editing contexts which don't always exist by
default. The Table Toolbar within the Write activity is a good example of this: Until a table has been
inserted into a document, there is no "table context" within which to edit. Of course, once there is
one, the Table Toolbar will be automatically selected whenever the table is selected. Since the act
of inserting the corresponding object creates the context that the toolbar associates with, this con-
trol should always appear first within the toolbar. The Icon guidelines provide further information on
the visual style for insert buttons.

Bookmarking
We hope to encourage discussion, iteration, and sharing on the laptops, and so we hope to en-
courage the idea of annotation across many different activities. When activities support textual an-
notations, highlighting, or other complex forms, they should have an Annotation Toolbar containing
all of these features. Some activities, especially early on before a system-wide annotation system
exists, may simply like to implement basic bookmarking. Though we hope to implement bookmark-
ing as a subset of the annotation model, this particular feature is essential to some activities, and
can be implemented in simpler ways in the meantime. When bookmarking exists as a single action
within an activity, it should be placed to the far right of any custom toolbar which seems appropri-
ate.

Hiding Toolbars
Although every activity requires at least the Activity Toolbar, developers may desire to hide the
Toolbox in order to provide an all-encompasing experience, such as in an adventure game or a
slideshow, or simply to make use of the full screen as an editing area. However, activity developers
should consider these use cases carefully and take the following guidelines into account when tak-
ing advantage of this feature.

Soft Hiding
Most activities should use soft-hiding, which means that although the Toolbox will be hidden com-
pletely from view, it will still be accessible by moving the cursor to the top edge of the screen, pro-
voking it to slide out and exposing the controls. This works great for casual or turn-based games,
as well as any games which don't require the mouse. In these instances, the ability to access pref-

39

erences, share or invite friends to the activity, start a new game, and of course exit the activity re-
mains available at all times. This is also useful for presentation modes, such as slideshows, allow-
ing the child to access the bar to perform operations such as next, back, and of course stop slide-
show, thus showing the toolbar permanently again. When a soft-hidden toolbar slides into view, it
slides in on top of the activity view beneath, eliminating the need to reflow the content; When hid-
ing is turned off, it again embeds itself within the view, thus shifting the content downward.
When the sole purpose for hiding the Toolbox is to provide additional screen area for viewing or
editing, a control within the View Toolbar should provide this option. Activities should not automati-
cally invoke soft-hiding for this purpose (unless the aforementioned toggle is stored as a prefer-
ence in the selected state). Though the laptops have a small viewable screen area, the choice to
hide potentially frequently used controls should be left to the children.
When soft-hiding of the Toolbox is in effect, pressing the escape key should always reveal it again,
exiting any mode related to its hiding (such as the slideshow). If no explicit toggle button or action
(such as "start slideshow") exists to turn soft-hiding back on, activities may institute a timeout, after
which it turns soft-hiding on again without input from the child. The activity must ensure that soft-
hiding is never initiated without explicit interaction whenever the cursor remains within the Toolbox
area.

Hard Hiding
Activities which make use of the entire screen, and moreover require active cursor movement
across it, may wish to hide the Toolbox completely from view, eliminating the possibility that it could
be invoked at the screen edge via the mouse. Hard-hiding allows activities to do this. The primary
use case for this mode is action games which could be interrupted accidentally during gameplay.
As such, these guidelines are written with respect to a fullscreen game, but their principles should
carry over to other uses activity developers may find.
Hard-hiding removes all access to the Toolbox for an extended period of time, and therefore should
only be used within activities which don't have their own toolbars. Also, since hard-hiding elimi-
nates any means of invoking the Toolbox, the activity must always provide any of the basic func-
tionality otherwise contained within the Activity Toolbar itself. Any game which supports networked
play over the mesh should always provide a way for the initiator to name the instance.
To remain consistent with soft-hiding mode and with general expectations, the escape key should
always provide a mechanism for exiting the game, even if another means exists. The escape key
could immediately exit the game, returning to an intro screen, but it will more likely pause the game
and reveal a menu containing an option to do so.

Rollovers
Rollover Animation Phases By TimeRollover Animation Phases By TimeRollover Animation Phases By Time

Animation Phase Time Offset
(seconds)

Time Offset
(seconds)

Immediate Background Change 0.0 0.1

Primary Rollover Begins Expanding 0.1 0.2

Primary Rollover Displayed 0.3 0.4

Secondary Rollover Begins Expanding 0.7 0.3

Secondary Rollover Displayed 1.0 ----

Primary Rollover

Secondary Rollover

40

Rollovers as Menus

Rollovers as Contextual Menus

Rollovers as Dialogs

Controls
Sugar defines its own set of control widgets that will create the user interface on the laptops.
Though most of the available controls will match developers' expectations, we've also developed
some new controls and altered behaviors of others to better suit the user experience on the ma-
chines. With these new developments comes a new set of guidelines for their usage and place-
ment which both maintains the broader set of goals and metaphors setup within Sugar and aids in
the development of collaborative user interface environments.
As the control widget specification and guidelines compose a substantial portion of this document,
internal page by page navigation is available by clicking on the header for any control set. In addi-
tion, the individual pages provide detailed specifications for the widgets and their various states.
Finally, we're providing developers with an Adobe Illustrator file of the most up to date Sugar Con-
trol Specification in .ai (07.04.05) and .svg (07.05.18) in order to streamline early application layout
and design mockups. Please understand these specifications and their implementations remain in
early development, and their designs may change as the UI progresses. We'll provide links to APIs
for the controls as they become available; Thanks for your patience.

Control Regions
In sugar, a predefined set of control regions provide the surfaces upon which controls may be
placed. Limiting the background colors that the controls sit on allows for a consistent set of visual
rules to define both the type and state of various controls while maintaining sufficient contrast even
without the use of color. Shown to the right, the basic regions are the Canvas, Panel, Toolbar, and
Palette.

Canvas: The canvas is the general purpose
"creation" space within any activity — the re-
gion for drawing, writing, or otherwise work-
ing within it. Since creation ranks high among
our goals, we also hope that this is the domi-
nant region of the screen in most activities.
The canvas region is specifically for generat-
ing content and 'should not' have any controls
placed upon it. As such, the canvas may be
any color the activity or the user desires,
though Sugar specifies both white and black
as the basic defaults.
Toolbars: Activity toolbars have a unique
dark gray color which distinguishes them
from the other control regions. The Frame
also uses this unique shade of gray to indi-

cate its purpose as an omnipresent toolbar that
a child may activate from within any view or activity. Each activity will have a toolbar at the top of
the screen, though when necessary additional toolbars may also be specified.
Panels: When appropriate, an activity may devote a portion of the screen to additional controls
which make more sense outside of the toolbar and within the global activity context. Controls
placed in this region should always remain relevant at all times, regardless of any other state as-
sociated with the activity or editing context.

41

http://wiki.laptop.org/go/Media:sugar_control_spec.ai.zip
http://wiki.laptop.org/go/Media:sugar_control_spec.ai.zip
http://wiki.laptop.org/go/Media:sugar_control_spec.svg.zip
http://wiki.laptop.org/go/Media:sugar_control_spec.svg.zip

Palettes: Palettes serve as multipurpose control regions which appear in several contexts. In an
interface without traditional windows and menus, palettes step in to provide a versatile solution in
many aspects of the user interface as the second layer of control. For a full description of their
uses, please see the section on Palettes and Rollovers.
Controls: The remainder of this section focuses largely on the specific controls and guidelines for
their usage within your activity's UI. The designs of all controls presented here follow a basic set of
rules regarding colors, line weights, and sizing for each of its various states. More detail about
these broader design decisions is discussed in the custom controls section.

Buttons

Text Buttons
Usage:
Behavior:
Guidelines:
States:

Text with Icon Buttons
Usage:
Behavior:
Guidelines:
States:

Icon Buttons
Usage:
Behavior:
Guidelines:

42

http://wiki.sugarlabs.org/go/File:Example_button_text.png
http://wiki.sugarlabs.org/go/File:Example_button_text.png
http://wiki.sugarlabs.org/go/File:Example_button_icon-text.png
http://wiki.sugarlabs.org/go/File:Example_button_icon-text.png
http://wiki.sugarlabs.org/go/File:Example_button_icon.png
http://wiki.sugarlabs.org/go/File:Example_button_icon.png
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Buttons
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Buttons

Toggle Buttons
Usage:
Behavior:
Guidelines:

Toggle Buttons
Usage:
Behavior:
Guidelines:

Palette Buttons
Usage:
Behavior:
Guidelines:

Palette Buttons
Usage:
Behavior:
Guidelines:

Basic Selection Controls

Checkboxes
Usage:
Behavior:
Guidelines:
States:

Radio Buttons
Usage:
Behavior:
Guidelines:
States:

Popup Menus
Usage:
Behavior:
Guidelines:
States:

43

http://wiki.sugarlabs.org/go/File:Example_checkbox.png
http://wiki.sugarlabs.org/go/File:Example_checkbox.png
http://wiki.sugarlabs.org/go/File:Example_radio.png
http://wiki.sugarlabs.org/go/File:Example_radio.png
http://wiki.sugarlabs.org/go/File:Example_popup_text.png
http://wiki.sugarlabs.org/go/File:Example_popup_text.png
http://wiki.sugarlabs.org/go/File:Example_popup_menu_text.png
http://wiki.sugarlabs.org/go/File:Example_popup_menu_text.png
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Basic_Selection_Controls
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Basic_Selection_Controls

Popup Palettes
Usage:
Behavior:
Guidelines:
States:

Popup Palettes
Usage:
Behavior:
Guidelines:
States:

44

Combo Boxes
Usage:
Behavior:
Guidelines:
States:

45

http://wiki.sugarlabs.org/go/File:Example_combobox.png
http://wiki.sugarlabs.org/go/File:Example_combobox.png
http://wiki.sugarlabs.org/go/File:Example_combobox_suggestions.png
http://wiki.sugarlabs.org/go/File:Example_combobox_suggestions.png
http://wiki.sugarlabs.org/go/File:Example_combobox_suggestions.png
http://wiki.sugarlabs.org/go/File:Example_combobox_suggestions.png

Advanced Selection Controls

Color Picker
Usage:
Behavior:
Guidelines:
States:

Date Picker
Usage:
Behavior:
Guidelines:
States:

Date Picker
Usage:
Behavior:
Guidelines:
States:

46

http://wiki.sugarlabs.org/go/File:Example_color_popup.png
http://wiki.sugarlabs.org/go/File:Example_color_popup.png
http://wiki.sugarlabs.org/go/File:Example_date_popup.png
http://wiki.sugarlabs.org/go/File:Example_date_popup.png
http://wiki.sugarlabs.org/go/File:Example_date_popup_palette.png
http://wiki.sugarlabs.org/go/File:Example_date_popup_palette.png
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Advanced_Selection_Controls
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Advanced_Selection_Controls

Object Picker
Usage:
Behavior:
Guidelines:

Object Picker
Usage:
Behavior:
Guidelines:

Popup Palettes
Usage:
Behavior:
Guidelines:

Popup Palettes
Usage:
Behavior:
Guidelines:

Find/Replace Palette
Usage:
Behavior:
Guidelines:

Find/Replace Palette
Usage:
Behavior:
Guidelines:

47

Adjustment Controls

Steppers
Usage:
Behavior:
Guidelines:
States:

Steppers
Usage:
Behavior:
Guidelines:
States:

Basic Sliders
Usage:
Behavior:
Guidelines:
States:

Sliders with Indication
Usage:
Behavior:
Guidelines:
States:

48

http://wiki.sugarlabs.org/go/File:Example_stepper.png
http://wiki.sugarlabs.org/go/File:Example_stepper.png
http://wiki.sugarlabs.org/go/File:Example_slider.png
http://wiki.sugarlabs.org/go/File:Example_slider.png
http://wiki.sugarlabs.org/go/File:Example_slider_fill.png
http://wiki.sugarlabs.org/go/File:Example_slider_fill.png
http://wiki.sugarlabs.org/go/File:Example_slider_indication.png
http://wiki.sugarlabs.org/go/File:Example_slider_indication.png
http://wiki.sugarlabs.org/go/File:Example_slider_indication_fill.png
http://wiki.sugarlabs.org/go/File:Example_slider_indication_fill.png
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Adjustment_Controls
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Adjustment_Controls

Color Sliders
Usage:
Behavior:
Guidelines:
States:

Color Sliders
Usage:
Behavior:
Guidelines:
States:

Indicators

Determinate Progress Bars
Usage:
Behavior:
Guidelines:
States:

Indeterminate Progress Bars
Usage:
Behavior:
Guidelines:
States:

49

http://wiki.sugarlabs.org/go/File:Example_progress_bar_determinate.png
http://wiki.sugarlabs.org/go/File:Example_progress_bar_determinate.png
http://wiki.sugarlabs.org/go/File:Example_progress_bar_indeterminate.png
http://wiki.sugarlabs.org/go/File:Example_progress_bar_indeterminate.png
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Indicators
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Indicators

Activity Spinners
Usage:
Behavior:
Guidelines:
States:

Activity Spinners
Usage:
Behavior:
Guidelines:
States:

Level Indicators
Usage:
Behavior:
Guidelines:
States:

Level Indicators
Usage:
Behavior:
Guidelines:
States:

Rating Indicators
Usage:
Behavior:
Guidelines:
States

50

http://wiki.sugarlabs.org/go/File:Example_activity_spinner.png
http://wiki.sugarlabs.org/go/File:Example_activity_spinner.png
http://wiki.sugarlabs.org/go/File:Example_indicator_level.png
http://wiki.sugarlabs.org/go/File:Example_indicator_level.png
http://wiki.sugarlabs.org/go/File:Example_indicator_rating.png
http://wiki.sugarlabs.org/go/File:Example_indicator_rating.png

Relevance Indicators
Usage:
Behavior:
Guidelines:
States:

Text Controls

Text Fields
Usage:
Behavior:
Guidelines:
States:

Tokenized Text Fields
Usage:
Behavior:
Guidelines:
States:

51

http://wiki.sugarlabs.org/go/File:Example_indicator_relevance.png
http://wiki.sugarlabs.org/go/File:Example_indicator_relevance.png
http://wiki.sugarlabs.org/go/File:Example_textfield.png
http://wiki.sugarlabs.org/go/File:Example_textfield.png
http://wiki.sugarlabs.org/go/File:Example_textfield_tokenized.png
http://wiki.sugarlabs.org/go/File:Example_textfield_tokenized.png
http://wiki.sugarlabs.org/go/File:Example_textfield_tokenized_suggestions.png
http://wiki.sugarlabs.org/go/File:Example_textfield_tokenized_suggestions.png
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Text_Controls
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Text_Controls

Search Fields
Usage:
Behavior:
Guidelines:
States:

Tokenized Search Fields
Usage:
Behavior:
Guidelines:

Tokenized Search Fields
Usage:
Behavior:
Guidelines:

Password Fields
Usage:
Behavior:
Guidelines:
States:

52

http://wiki.sugarlabs.org/go/File:Example_searchfield.png
http://wiki.sugarlabs.org/go/File:Example_searchfield.png
http://wiki.sugarlabs.org/go/File:Example_searchfield_suggestions.png
http://wiki.sugarlabs.org/go/File:Example_searchfield_suggestions.png
http://wiki.sugarlabs.org/go/File:Example_passwordfield.png
http://wiki.sugarlabs.org/go/File:Example_passwordfield.png
http://wiki.sugarlabs.org/go/File:Example_passwordfield_entry.png
http://wiki.sugarlabs.org/go/File:Example_passwordfield_entry.png

Multiline Text Fields
Usage:
Behavior:
Guidelines:
States:

Multiline Text Fields
Usage:
Behavior:
Guidelines:
States:

View Controls

Basic Sort Bars
Usage:
Behavior:
Guidelines:

Advanced Sort Bars
Usage:
Behavior:
Guidelines:

53

http://wiki.sugarlabs.org/go/File:Example_textfield_multiline.png
http://wiki.sugarlabs.org/go/File:Example_textfield_multiline.png
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/View_Controls
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/View_Controls

Sort Bar View Toggles
Usage:
Behavior:
Guidelines:

Tab Bars
Usage:
Behavior:
Guidelines:

Tabbed Sidebars
Usage:
Behavior:
Guidelines:

Disclosure Triangles
Usage:
Behavior:
Guidelines:

Tooltips
Usage:
Behavior:
Guidelines:

Grouping Controls

Separators
Usage: Separator width has not previously been specified in the HIG, but historically, two sepa-
rators are the same width as one toolbar icon.
Behavior:
Guidelines:

Trays
Usage:
Behavior:
Guidelines:

Custom Controls
When to Use Custom Controls
We have created a set of controls to suit most basic needs for Activity development. Using these
controls wherever possible ensures that interfaces across Activities remain consistent and clear,
and also maintains the visual style of the Sugar interface. Nonetheless, their basic functionality
may prove limiting in some cases, and we certainly hope to inspire new and exciting uses of the

54

http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Grouping_Controls
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Controls/Grouping_Controls
http://www.garycmartin.com
http://www.garycmartin.com

various capabilities of the laptops, including their collaborative nature, and don't want to stifle addi-
tional ideation and design. For this reason, we are providing a general set of guidelines for the
creation of custom controls that match the visual style of Sugar and maintain some basic stan-
dards for compatibility and usability within the Sugar interface.
Before implementing a custom control, be sure that the need truly exists. In some cases, you may
find that a combination of simpler controls may suffice. In other cases, more complex functionality
can be accommodated though use of a Palette. Additionally, be sure that the need is a functional
one; Custom controls should have additional or different behavior that the current controls don't
provide, and not simply define a different aesthetic for existing ones. Again, think carefully about
the requirements for the control, and be sure that the functional need itself merits the work associ-
ated with creating the new control.

Control Color Palette
The Sugar interface defines a strict palette for the control widgets, along with guidelines for using
these colors for various states and control types. Custom controls should adhere to the same set
of colors and associated rules in order to ensure that their behavior mimics those of the core Sugar
controls, and can be easily inferred by those who are familiar with them. Though their name and
primary uses define these colors, any color within the palette provided below may be used for vari-
ous parts of your control where it doesn't interfere with the basic rules associated with them.

Name Primary Uses Hex % Gray

Black Palettes, Popups #000000 100%

Toolbar Grey Toolbars, Trays, Palette Groupings #404040 75%

Button Grey Default Button States #808080 50%

Selection Grey Selections, Panel Groupings #A6A6A6 35%

Panel Grey Panels, Desktop #C0C0C0 25%

Text Field Grey Text entry background #E5E5E5 10%

White Pressed states, multiline text areas #FFFFFF 0%

Control Sizing
In accordance with the grid system, we have defined two standard sizes for controls: 75px and
45px. These sizes determine the bounding box for a given control, with 45px being the smallest
recommended active (clickable) area for any control component. Note that the control itself may
actually be smaller than this canvas, depending on the desired context. For instance, the icons for
buttons fill up to 60% of the canvas area, with the actual icons having sizes of 55px and 27px.

Cursor
Coming soon...

55

http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Layout_Guidelines
http://wiki.sugarlabs.org/go/Human_Interface_Guidelines/The_Sugar_Interface/Layout_Guidelines

