Changes

Line 2: Line 2:  
 
 
 
 
<code>
 
<code>
Challenge your friend to answer (999989)
+
Challenge your friend to answer (999989)^2
2
   
in 10 seconds ;)
 
in 10 seconds ;)
   −
Its simply: Question - 11 | 000 | (11)
+
Its simply: Question - 11 | 000 | (11)^2 = 999978000121.
2 = 999978000121.
   
</code>
 
</code>
   Line 259: Line 257:  
<code>
 
<code>
 
Trick 02 : Square of numbers just below 100
 
Trick 02 : Square of numbers just below 100
Let us find (x)
+
Let us find (x)^2. X is just below 100.
2
  −
. X is just below 100.
   
Step 01: Find the difference between 100 and this number.
 
Step 01: Find the difference between 100 and this number.
 
Step 02: Now, Subtract the difference from the number (x).
 
Step 02: Now, Subtract the difference from the number (x).
Step 03: Find x
+
Step 03: Find x^2
2
   
Answer = Step 02 | Step 03
 
Answer = Step 02 | Step 03
 
Example:
 
Example:
Question: (96)​
+
Question: (96)​^2
2
   
 
 
 
 
Step 01: Difference is 4 (100 - 96 = 4)
 
Step 01: Difference is 4 (100 - 96 = 4)
 
Step 02: 96 - 4 = 92 
 
Step 02: 96 - 4 = 92 
Step 03: (4)
+
Step 03: (4)^2 = 16 
2 = 16 
   
Answer = ​92​16 
 
Answer = ​92​16 
 
</code>
 
</code>
Line 280: Line 273:  
<code> 
 
<code> 
 
Trick 03 : Square of numbers just above 100
 
Trick 03 : Square of numbers just above 100
Let us find (Y)
+
Let us find (Y)^2. Y is just above 100.
2
  −
. Y is just above 100.
   
Step 01: Find the difference between the number and 100.
 
Step 01: Find the difference between the number and 100.
 
Step 02: Now, Add the difference to the number (y).
 
Step 02: Now, Add the difference to the number (y).
Step 03: Find y
+
Step 03: Find y^2. Add
2
  −
. Add
   
Answer = Step 02 | Step 03
 
Answer = Step 02 | Step 03
 
Example:
 
Example:
Question: (104)​
+
Question: (104)​^2
2
   
 
 
 
 
Step 01: Difference is 4 (104 - 100 = 4)
 
Step 01: Difference is 4 (104 - 100 = 4)
 
Step 02: 104 + 4 = 108 
 
Step 02: 104 + 4 = 108 
Step 03: (4)
+
Step 03: (4)^2 = 16 
2 = 16 
   
Answer = ​108​16 
 
Answer = ​108​16 
 
</code>
 
</code>
Line 302: Line 289:  
<code>
 
<code>
 
Trick 04 : Square of any three digit ending with zero in between
 
Trick 04 : Square of any three digit ending with zero in between
Let us find (x0y)
+
Let us find (x0y)^2. Digits are referred from left to right.
2
+
Step 01: Square third digit (y)^2
. Digits are referred from left to right.
  −
Step 01: Square third digit (y)
  −
2
   
Step 02: Multiply x with y and double the answer ( x * y * 2 ). The answer is of two
 
Step 02: Multiply x with y and double the answer ( x * y * 2 ). The answer is of two
 
digits. Add zero in front, if it is in single digit.
 
digits. Add zero in front, if it is in single digit.
Step 03: Square first digit (x)
+
Step 03: Square first digit (x)^2
2
+
Answer = Step 03 | Step 02 | Step 01 = (x)^2 | ( x * y * 2 ) | (y)^2
Answer = Step 03 | Step 02 | Step 01 = (x)
  −
2
  −
| ( x * y * 2 ) | (y)
  −
2
   
Example:
 
Example:
Question: (504)​
+
Question: (504)​^2
2
   
 
 
 
Step 01: (4)
+
Step 01: (4)^2 = 16 
2 = 16 
   
Step 02: 5 * 4 * 2 = 40 
 
Step 02: 5 * 4 * 2 = 40 
Step 03: (5)
+
Step 03: (5)^2 = 25 
2 = 25 
   
Answer = ​25​40​16 
 
Answer = ​25​40​16