Changes

no edit summary
Line 67: Line 67:  
This project aims to create an Activity to allow users to easily broadcast and stream audio and video from their webcam and microphone or their computer's display output to a classroom's central server, and share the live feed with their peers. This will be integrated into the Neighborhood View (as a "broadcast audio and video to" option or similar) to allow for most seamless sharing of broadcasts.
 
This project aims to create an Activity to allow users to easily broadcast and stream audio and video from their webcam and microphone or their computer's display output to a classroom's central server, and share the live feed with their peers. This will be integrated into the Neighborhood View (as a "broadcast audio and video to" option or similar) to allow for most seamless sharing of broadcasts.
   −
Rationale: This project does not aim to recreate Skype or similar central-server small-scale conferencing software. This project's local-peer-discovery and mass-broadcasting architecture would be of use in a classroom setting for the following reasons:
+
'''Rationale'''
 +
 
 +
This project does not aim to recreate Skype or similar central-server small-scale conferencing software. This project's local-peer-discovery and mass-broadcasting architecture would be of use in a classroom setting for the following reasons:
    
As we have seen in classroom settings such as MIT's TEAL project (for teaching introductory Physics), in the context of displaying live information from a  to a large group of students for an experiment, lecture, or the like, a video feed must be established and broadcast, ideally via several video displays. In TEAL, many projectors placed throughout the classroom are used for this purpose; however for an elementary school this would be prohibitively expensive. Assuming said elementary school is running a pilot program of Sugar-equipped laptops, they can instead have each student's laptop "listen" to incoming audio and video broadcasts, and display it when received. This also has the advantage of  
 
As we have seen in classroom settings such as MIT's TEAL project (for teaching introductory Physics), in the context of displaying live information from a  to a large group of students for an experiment, lecture, or the like, a video feed must be established and broadcast, ideally via several video displays. In TEAL, many projectors placed throughout the classroom are used for this purpose; however for an elementary school this would be prohibitively expensive. Assuming said elementary school is running a pilot program of Sugar-equipped laptops, they can instead have each student's laptop "listen" to incoming audio and video broadcasts, and display it when received. This also has the advantage of  
Line 73: Line 75:  
'''Architecture'''
 
'''Architecture'''
   −
This will utilize an architecture involving multiple peers and a single local Icecast server, all communicating over the local wireless network/mesh. When a user intends to broadcast a new video, . The Icecast server can optionally also record
+
This will utilize an architecture involving multiple peers and a single local Icecast server, all communicating over the local wireless network/mesh. When a user intends to broadcast a new video, the client will automatically send a request, authentication and identification details, to the classroom's Icecast server (which does not necessarily have to be a dedicated server; the software could, for example, be running on the teacher's laptop). Once confirmed, the stream is then uploaded and streamed to the local Icecast server via GStreamer, creating a unique URL for the stream. When the user invites others, or perhaps the entire class, to view the stream, then it would send the URL of the stream to the target user, and the peer's identification details. This would be done through the central server to increase security by making spoofing more difficult.
    
'''Accepting New Streams'''
 
'''Accepting New Streams'''
41

edits