Line 41: |
Line 41: |
| Ans: Yes, I was introduced to Open Source through GSoC last year where I worked on Bootlimn: Extending Bootchart to use Systemtap for The Fedora Project. ( http://code.google.com/p/bootlimn/ ) or ( http://code.google.com/p/google-summer-of-code-2008-fedora/ ). I am currently working on the following projects. | | Ans: Yes, I was introduced to Open Source through GSoC last year where I worked on Bootlimn: Extending Bootchart to use Systemtap for The Fedora Project. ( http://code.google.com/p/bootlimn/ ) or ( http://code.google.com/p/google-summer-of-code-2008-fedora/ ). I am currently working on the following projects. |
| #Introducing Speech Recognition in OLPC and making a dictation activity. ( http://wiki.laptop.org/go/Speech_to_Text ) | | #Introducing Speech Recognition in OLPC and making a dictation activity. ( http://wiki.laptop.org/go/Speech_to_Text ) |
− | #Introducing Java Profiling in Systemtap.(A work from home internship for Red Hat Inc.). This project involved extensive research which took most of the past 4 months I have been working on it. Coding has just begun. | + | #Introducing Java Profiling in Systemtap (A work from home internship for Red Hat Inc.). This project involved extensive research which took most of the past 4 months I have been working on it. Coding has just begun. |
| #A sentiment analysis project for Indian financial markets. (My B. Tech major project that I plan to release under GPLv2.) I can put up the source code on https://blogs-n-stocks.dev.java.net/ after mid-April when I am done with my final evaluations in my college. | | #A sentiment analysis project for Indian financial markets. (My B. Tech major project that I plan to release under GPLv2.) I can put up the source code on https://blogs-n-stocks.dev.java.net/ after mid-April when I am done with my final evaluations in my college. |
| | | |
Line 65: |
Line 65: |
| I have been working towards achieving this goal for the past 6 months. The task can be accomplished by breaking the problem into the following smaller subsets and tackling them one by one: | | I have been working towards achieving this goal for the past 6 months. The task can be accomplished by breaking the problem into the following smaller subsets and tackling them one by one: |
| | | |
− | # '''''Port an existing speech engine to the less powerful computers like XO.''''' This has been a part of the work that I have been doing so far. I chose Julius as the Speech engine as it is lighter and written in C. I have been able to compile Julius on the XO and am continuing to optimize it to make it work faster. Also XO-1 is the bare minimum case on which I'll be testing it. If it works on this it will most certainly work anywhere else. | + | # '''''Port an existing speech engine to less powerful computers like XO.''''' This has been a part of the work that I have been doing so far. I chose Julius as the Speech engine as it is lighter and written in C. I have been able to compile Julius on the XO and am continuing to optimize it to make it work faster. Also XO-1 is the bare minimum case on which I'll be testing it. If it works on this it will most certainly work anywhere else. |
| # '''''Writing a system service that will take speech as an input and generate corresponding keystrokes and then proceed as if the input was given through the keyboard.''''' This method was suggested by Benjamin M. Schwartz as a simpler approach as compared to writing a speech library in Python (which would use DBUS to connect the engine to the activities) in which case changes have to be made to the existing activities to use the library. | | # '''''Writing a system service that will take speech as an input and generate corresponding keystrokes and then proceed as if the input was given through the keyboard.''''' This method was suggested by Benjamin M. Schwartz as a simpler approach as compared to writing a speech library in Python (which would use DBUS to connect the engine to the activities) in which case changes have to be made to the existing activities to use the library. |
| # '''''Starting with recognition of alphabets of a language rather than full-blown speech recognition.''''' This will give an achievable target for the initial stages. As the alphabet set is limited to a small number for most languages, this target will be feasible considering both computational power requirements and attainable efficiency. | | # '''''Starting with recognition of alphabets of a language rather than full-blown speech recognition.''''' This will give an achievable target for the initial stages. As the alphabet set is limited to a small number for most languages, this target will be feasible considering both computational power requirements and attainable efficiency. |