Difference between revisions of "Activities/Turtle in a Pond"

From Sugar Labs
Jump to navigation Jump to search
Line 54: Line 54:
 
<pre>
 
<pre>
 
def _turtle_strategy(self, turtle):
 
def _turtle_strategy(self, turtle):
     evenodd = turtle[1] % 2
+
     dots = self._surrounding_dots(turtle)
 
     for i in range(6):  # search for an opening
 
     for i in range(6):  # search for an opening
        column = turtle[0] + CIRCLE[evenodd][i][0]
+
         if not self._dots[dots[i]].type:
        row = turtle[1] + CIRCLE[evenodd][i][1]
+
             return self._dot_to_grid(dots[i])
         if not self._dots[self._grid_to_dot((column, row))].type:
 
             return [column, row]
 
 
     return turtle
 
     return turtle
 
</pre>
 
</pre>
Line 66: Line 64:
  
 
<pre>
 
<pre>
def _turtle_strategy(self, turtle):
+
    dots = self._surrounding_dots(turtle)
    evenodd = turtle[1] % 2
 
 
     for i in range(6):  # search for an opening
 
     for i in range(6):  # search for an opening
        column = turtle[0] + CIRCLE[evenodd][i][0]
+
         if not self._dots[dots[i]].type:
        row = turtle[1] + CIRCLE[evenodd][i][1]
 
         if not self._dots[self._grid_to_dot((column, row))].type:
 
 
             self._orientation = i
 
             self._orientation = i
             return [column, row]
+
             return self._dot_to_grid(dots[i])
 
     return turtle
 
     return turtle
 
</pre>
 
</pre>
  
In the '''default strategy''', the turtle choose a random direction and goes there if the dot is open.
+
The turtle choose a random direction and goes there if the dot is open.
  
 
<pre>
 
<pre>
 
def _turtle_strategy(self, turtle):
 
def _turtle_strategy(self, turtle):
     evenodd = turtle[1] % 2
+
     dots = self._surrounding_dots(turtle)
 
     n = int(uniform(0, 6))  # choose a random orientation
 
     n = int(uniform(0, 6))  # choose a random orientation
     for i in range(6):
+
     for i in range(6): # search for an opening
         column = turtle[0] + CIRCLE[evenodd][(i + n) % 6][0]
+
         if not self._dots[dots[(i + n) % 6]].type:
        row = turtle[1] + CIRCLE[evenodd][(i + n) % 6][1]
 
        if not self._dots[self._grid_to_dot((column, row))].type:
 
 
             self._orientation = (i + n) % 6
 
             self._orientation = (i + n) % 6
             return [column, row]
+
             return self._dot_to_grid(dots[(i + n) % 6])
 
     return turtle
 
     return turtle
 
</pre>
 
</pre>
Line 96: Line 89:
 
<pre>
 
<pre>
 
def _turtle_strategy(self, turtle):
 
def _turtle_strategy(self, turtle):
     evenodd = turtle[1] % 2
+
     dots = self._surrounding_dots(turtle)
     for i in range(6):  # look for an edge to escape to
+
     for i in range(6):  # search for an edge
        column = turtle[0] + CIRCLE[evenodd][i][0]
+
         if self._dots[dots[i]].type is None:
        row = turtle[1] + CIRCLE[evenodd][i][1]
 
         if self._dots[self._grid_to_dot((column, row))].type is None:
 
 
             self._orientation = i
 
             self._orientation = i
             return [column, row]
+
             return self._dot_to_grid(dots[i])
  
 
     n = int(uniform(0, 6))  # choose a random orientation
 
     n = int(uniform(0, 6))  # choose a random orientation
     for i in range(6):
+
     for i in range(6): # search for an opening
         column = turtle[0] + CIRCLE[evenodd][(i + n) % 6][0]
+
         if not self._dots[dots[(i + n) % 6]].type:
        row = turtle[1] + CIRCLE[evenodd][(i + n) % 6][1]
 
        if not self._dots[self._grid_to_dot((column, row))].type:
 
 
             self._orientation = (i + n) % 6
 
             self._orientation = (i + n) % 6
             return [column, row]
+
             return self._dot_to_grid(dots[(i + n) % 6])
 
     return turtle
 
     return turtle
 
</pre>
 
</pre>
  
If it mostly tries to continue in the direction it was already heading, the turtle is harder to catch.
+
In the '''default strategy''', it looks for a path to the edge in the direction it was already heading.
  
 
<pre>
 
<pre>
 
def _turtle_strategy(self, turtle):
 
def _turtle_strategy(self, turtle):
     evenodd = turtle[1] % 2
+
     dots = self._surrounding_dots(turtle)
     if int(uniform(0, 2)) > 0:  # mostly try going straight
+
 
         column = turtle[0] + CIRCLE[evenodd][self._orientation][0]
+
     for i in range(6):  # search for an edge
        row = turtle[1] + CIRCLE[evenodd][self._orientation][1]
+
         if self._dots[dots[i]].type is None:
        if not self._dots[self._grid_to_dot((col, row))].type:
+
            self._orientation = i
            return [col, row]
+
            return self._dot_to_grid(dots[i])
 +
 
 +
    if self._daylight_ahead(turtle):
 +
        return self._dot_to_grid(dots[self._orientation])
 +
 
 
     n = int(uniform(0, 6))  # choose a random orientation
 
     n = int(uniform(0, 6))  # choose a random orientation
     for i in range(6):
+
     for i in range(6): # search for an opening
         column = turtle[0] + CIRCLE[evenodd][(i + n) % 6][0]
+
         if not self._dots[dots[(i + n) % 6]].type:
        row = turtle[1] + CIRCLE[evenodd][(i + n) % 6][1]
 
        if not self._dots[self._grid_to_dot((column, row))].type:
 
 
             self._orientation = (i + n) % 6
 
             self._orientation = (i + n) % 6
             return [column, row]
+
             return self._dot_to_grid(dots[(i + n) % 6])
 
     return turtle
 
     return turtle
 
</pre>
 
</pre>
Line 148: Line 139:
 
There are some resources that you can use in your program, including:
 
There are some resources that you can use in your program, including:
  
 +
;self._surrounding_dots((column, row)): returns an array of dots surrounding a given position in the grid
 +
;self._daylight_ahead((column, row)): returns True if there is a clear path to the edge heading in the current direction
 
;self._dots: the array of dots from which you can test the type attribute (self._dots[i].type==None → edge; self._dots[i].type==False → open; self._dots[i].type==True → blocked)
 
;self._dots: the array of dots from which you can test the type attribute (self._dots[i].type==None → edge; self._dots[i].type==False → open; self._dots[i].type==True → blocked)
 
;self._orientation:you can set the orientation of your turtle by assigning a number from 0-5 (clockwise beginning with 30 degrees from north)
 
;self._orientation:you can set the orientation of your turtle by assigning a number from 0-5 (clockwise beginning with 30 degrees from north)
Line 153: Line 146:
 
;self._grid_to_dot((column, row)): returns the dot that is at a grid position (column, row)
 
;self._grid_to_dot((column, row)): returns the dot that is at a grid position (column, row)
 
;self._dot_to_grid(dot): returns an array (column, row) representing the grid position of a dot
 
;self._dot_to_grid(dot): returns an array (column, row) representing the grid position of a dot
;CIRCLE: a 2✕6✕2 array of offsets that can used to find the column and row of the dots surrounding the turtle.
 
 
A bit more explanation about the CIRCLE constant:
 
 
CIRCLE contains tuples of offsets (a column offset and a row offset) that allow you to find the grid coordinates (column and row) of the 6 dots that surround the turtle. It is complicated by the fact that the rows are staggered (in order to form hexagons) so when the turtle is on an even row (turtle[1] % 2 == 0) we use one set of offsets (CIRCLE[0]) and when it is on an odd row (turtle[1] % 2 == 1) we use a second set of offsets (CIRCLE[1]).
 
  
 
=== Where to get Turtle in a Pond ===
 
=== Where to get Turtle in a Pond ===

Revision as of 16:23, 30 November 2011

Turtle in a Pond Activity

Turtle in a Pond is a strategy game. The goal is to surround the turtle before it runs of the screen.

Turtle-in-a-pond.png

How to play Turtle in a Pond

Click on the dots to keep the turtle from escaping.


Did you know that:

  • You can load your own strategy for the turtle by importing Python code you can write with Pippy?


The Toolbars

TurtlePond toolbar-1.png

from left to right
  1. the Activity toolbar button (shown in the open position)
  2. the New-game button
  3. an area for messages
  4. the Load-new-strategy button
  5. the Reload-the-default-strategy button
  6. the Activity stop button

Strategy

Cut and paste these examples into Pippy and save then to your Sugar Journal. Then use the Load-strategy button in Turtle in a Pond to try them.

In this strategy, the turtle moves down regardless of whether the dot is open.

def _turtle_strategy(self, turtle):
    turtle[1] += 1
    return turtle

In this strategy, the turtle moves down until it is blocked (i.e., when the dot type is True).

def _turtle_strategy(self, turtle):
    if not self._dots[self._grid_to_dot((turtle[0], turtle[1]+1))].type:
       turtle[1] += 1
    return turtle

In this strategy, the turtle searches for an open dot, looking clockwise.

def _turtle_strategy(self, turtle):
    dots = self._surrounding_dots(turtle)
    for i in range(6):  # search for an opening
        if not self._dots[dots[i]].type:
            return self._dot_to_grid(dots[i])
    return turtle

In this version, the turtle orientation is set as well.

    dots = self._surrounding_dots(turtle)
    for i in range(6):  # search for an opening
        if not self._dots[dots[i]].type:
            self._orientation = i
            return self._dot_to_grid(dots[i])
    return turtle

The turtle choose a random direction and goes there if the dot is open.

def _turtle_strategy(self, turtle):
    dots = self._surrounding_dots(turtle)
    n = int(uniform(0, 6))  # choose a random orientation
    for i in range(6):  # search for an opening
        if not self._dots[dots[(i + n) % 6]].type:
            self._orientation = (i + n) % 6
            return self._dot_to_grid(dots[(i + n) % 6])
    return turtle

In this strategy, the turtle will go off the edge if it can.

def _turtle_strategy(self, turtle):
    dots = self._surrounding_dots(turtle)
    for i in range(6):  # search for an edge
        if self._dots[dots[i]].type is None:
            self._orientation = i
            return self._dot_to_grid(dots[i])

    n = int(uniform(0, 6))  # choose a random orientation
    for i in range(6):  # search for an opening
        if not self._dots[dots[(i + n) % 6]].type:
            self._orientation = (i + n) % 6
            return self._dot_to_grid(dots[(i + n) % 6])
    return turtle

In the default strategy, it looks for a path to the edge in the direction it was already heading.

def _turtle_strategy(self, turtle):
    dots = self._surrounding_dots(turtle)

    for i in range(6):  # search for an edge
        if self._dots[dots[i]].type is None:
            self._orientation = i
            return self._dot_to_grid(dots[i])

    if self._daylight_ahead(turtle):
        return self._dot_to_grid(dots[self._orientation])

    n = int(uniform(0, 6))  # choose a random orientation
    for i in range(6):  # search for an opening
        if not self._dots[dots[(i + n) % 6]].type:
            self._orientation = (i + n) % 6
            return self._dot_to_grid(dots[(i + n) % 6])
    return turtle

The dots are stored in a 13✕13 array. Each dot has an attribute, 'type', that determines it status. The edges have a type=None. Occupied dots have a type=True. Unoccupied dots have a type=False.

Your strategy should start with:

def _turtle_strategy(self, turtle):

The turtle argument is a tuple containing the column and row of the current turtle position. That is, turtle[0] is the horizontal position and turtle[1] is the vertical position.

Your strategy should return a tuple containing the column and row of the new turtle position, e.g.,

return [column, row]

There are some resources that you can use in your program, including:

self._surrounding_dots((column, row))
returns an array of dots surrounding a given position in the grid
self._daylight_ahead((column, row))
returns True if there is a clear path to the edge heading in the current direction
self._dots
the array of dots from which you can test the type attribute (self._dots[i].type==None → edge; self._dots[i].type==False → open; self._dots[i].type==True → blocked)
self._orientation
you can set the orientation of your turtle by assigning a number from 0-5 (clockwise beginning with 30 degrees from north)
self._set_label('your message here')
you can write a message on the toolbar if you want to communicate what your turtle is thinking
self._grid_to_dot((column, row))
returns the dot that is at a grid position (column, row)
self._dot_to_grid(dot)
returns an array (column, row) representing the grid position of a dot

Where to get Turtle in a Pond

The Turtle in a Pond activity is available for download from the Sugar activity portal: Turtle in a Pond

The source code is available on the Sugar Labs Gitorious server.