Difference between revisions of "Activities/Turtle in a Pond"

From Sugar Labs
Jump to navigation Jump to search
m (remove 'deprecated' word)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
==Turtle in a Pond Activity==
 
==Turtle in a Pond Activity==
  
Turtle in a Pond is a strategy game. The goal is to surround the turtle before it runs off the screen. (Turtle in a Pond was inspired by the game [http://www.members.shaw.ca/gf3/circle-the-cat.html Circle the Cat].)
+
Read at https://help.sugarlabs.org/turtle_in_a_pond.html
  
[[File:Turtle-in-a-pond.png|300px]]
+
The source file has been moved to [https://github.com/godiard/help-activity/blob/master/source/turtle_in_a_pond.rst GitHub]
 
 
=== How to play Turtle in a Pond ===
 
 
 
Click on the dots to keep the turtle from escaping.
 
 
 
<gallery>
 
File:Turtle-in-a-pond-win.png|The turtle is captured
 
File:Turtle-in-a-pond-lose.png|The turtle escaped
 
</gallery>
 
 
 
 
 
Did you know that:
 
* You can load your own [[#Strategy|strategy]] for the turtle by importing Python code you can write with [http://activities.sugarlabs.org/en-US/sugar/addon/4041 Pippy]?
 
 
 
 
 
==== The Toolbars ====
 
 
 
[[Image:TurtlePond_toolbar-1.png]]
 
 
 
:from left to right
 
# the Activity toolbar button (shown in the open position)
 
# the New-game button
 
# the Beginner level (uses beginner strategy below)
 
# the Intermediate level (uses intermediate strategy below)
 
# the Expert level (uses expert strategy below)
 
# the Custom level (uses user-designed strategy below)
 
# an area for messages
 
# the Load-new-strategy button
 
# the Activity stop button
 
 
 
=== Strategy ===
 
 
 
Cut and paste these examples into Pippy and save then to your Sugar Journal. Then use the Load-new-strategy button in the Turtle-in-a-Pond Activity to try them. They are written in Python, you can learn about Python by reading the [http://docs.python.org  Python Documentation]
 
 
 
In this strategy, the turtle moves down regardless of whether the dot is open.
 
<pre>
 
def _turtle_strategy(self, turtle):
 
    turtle[1] += 1
 
    return turtle
 
</pre>
 
 
 
In this strategy, the turtle moves down until it is blocked (i.e., when the dot type is True).
 
<pre>
 
def _turtle_strategy(self, turtle):
 
    if not self._dots[self._grid_to_dot((turtle[0], turtle[1]+1))].type:
 
      turtle[1] += 1
 
    return turtle
 
</pre>
 
 
 
In this strategy, the turtle searches for an open dot, looking clockwise.
 
 
 
<pre>
 
def _turtle_strategy(self, turtle):
 
    dots = self._surrounding_dots(turtle)
 
    for i in range(6): # search for an opening
 
        if not self._dots[dots[i]].type:
 
            return self._dot_to_grid(dots[i])
 
    return turtle
 
</pre>
 
 
 
In this version, the turtle orientation is set as well.
 
 
 
<pre>
 
def _turtle_strategy(self, turtle):
 
    dots = self._surrounding_dots(turtle)
 
    for i in range(6):  # search for an opening
 
        if not self._dots[dots[i]].type:
 
            self._orientation = i
 
            return self._dot_to_grid(dots[i])
 
    return turtle
 
</pre>
 
 
 
The turtle choose a random direction and goes there if the dot is open. (This is the beginner strategy.)
 
 
 
<pre>
 
def _turtle_strategy(self, turtle):
 
    dots = self._surrounding_dots(turtle)
 
    n = int(uniform(0, 6))  # choose a random orientation
 
    for i in range(6):  # search for an opening
 
        if not self._dots[dots[(i + n) % 6]].type:
 
            self._orientation = (i + n) % 6
 
            return self._dot_to_grid(dots[(i + n) % 6])
 
    return turtle
 
</pre>
 
 
 
In this strategy, the turtle will go off the edge if it can. (This is the intermediate strategy.)
 
 
 
<pre>
 
def _turtle_strategy(self, turtle):
 
    dots = self._surrounding_dots(turtle)
 
    for i in range(6):  # search for an edge
 
        if self._dots[dots[i]].type is None:
 
            self._orientation = i
 
            return self._dot_to_grid(dots[i])
 
 
 
    n = int(uniform(0, 6))  # choose a random orientation
 
    for i in range(6):  # search for an opening
 
        if not self._dots[dots[(i + n) % 6]].type:
 
            self._orientation = (i + n) % 6
 
            return self._dot_to_grid(dots[(i + n) % 6])
 
    return turtle
 
</pre>
 
 
 
In this version, it looks for a path to the edge in the direction it was already heading.
 
 
 
<pre>
 
def _turtle_strategy(self, turtle):
 
    dots = self._surrounding_dots(turtle)
 
 
 
    for i in range(6):  # search for an edge
 
        if self._dots[dots[i]].type is None:
 
            self._orientation = i
 
            return self._dot_to_grid(dots[i])
 
 
 
    if self._daylight_ahead(turtle):
 
        return self._dot_to_grid(dots[self._orientation])
 
 
 
    n = int(uniform(0, 6))  # choose a random orientation
 
    for i in range(6):  # search for an opening
 
        if not self._dots[dots[(i + n) % 6]].type:
 
            self._orientation = (i + n) % 6
 
            return self._dot_to_grid(dots[(i + n) % 6])
 
    return turtle
 
</pre>
 
 
 
A weighing function is used: preference is given to dots closer to the edges.
 
<pre>
 
def _turtle_strategy(self, turtle):
 
    dots_ordered_by_weight = self._ordered_weights(turtle)
 
    if self._dots[dots_ordered_by_weight[0]].type is None:
 
        return self._dot_to_grid(dots_ordered_by_weight[0])
 
    elif not self._dots[dots_ordered_by_weight[0]].type:
 
        return self._dot_to_grid(dots_ordered_by_weight[0])
 
    else:
 
        return turtle
 
</pre>
 
 
 
This is the expert strategy.
 
 
 
<pre>
 
def _turtle_strategy(self, turtle):
 
    dots = self._surrounding_dots(turtle)
 
    for i in range(6):
 
        if self._dots[dots[i]].type is None:
 
            self._orientation = i
 
            return self._dot_to_grid(dots[i])
 
    dots_ordered_by_weight = self._ordered_weights(turtle)
 
    for i in range(6):
 
        self._orientation = dots.index(dots_ordered_by_weight[i])
 
        if self._daylight_ahead(turtle):
 
            return self._dot_to_grid(dots[self._orientation])
 
    n = int(uniform(0, 6))
 
    for i in range(6):
 
        if not self._dots[dots[(i + n) % 6]].type:
 
            self._orientation = (i + n) % 6
 
            return self._dot_to_grid(dots[(i + n) % 6])
 
    self._orientation = (i + n) % 6
 
    return turtle
 
 
 
</pre>
 
 
 
 
 
The dots are stored in a 13✕13 array. Each dot has an attribute, 'type', that determines it status. The edges have a type=None. Occupied dots have a type=True. Unoccupied dots have a type=False.
 
 
 
Your strategy should start with:
 
 
 
def _turtle_strategy(self, turtle):
 
 
 
The turtle argument is a tuple containing the column and row of the current turtle position. That is, turtle[0] is the horizontal position and turtle[1] is the vertical position.
 
 
 
Your strategy should return a tuple containing the column and row of the new turtle position, e.g.,
 
 
 
return [column, row]
 
 
 
===Resources===
 
There are some resources that you can use in your program, including:
 
 
 
;self._surrounding_dots((column, row)): returns an array of dots surrounding a given position in the grid
 
;self._daylight_ahead((column, row)): returns True if there is a clear path to the edge heading in the current direction
 
;self._ordered_weights((column, row)): returns an array of surrounding dots ordered by their distance from the edge
 
;self._dots: the array of dots from which you can test the type attribute (self._dots[i].type==None → edge; self._dots[i].type==False → open; self._dots[i].type==True → blocked)
 
;self._orientation:you can set the orientation of your turtle by assigning a number from 0-5 (clockwise beginning with 30 degrees from north)
 
;self._set_label('your message here'):you can write a message on the toolbar if you want to communicate what your turtle is thinking
 
;self._grid_to_dot((column, row)): returns the dot that is at a grid position (column, row)
 
;self._dot_to_grid(dot): returns an array (column, row) representing the grid position of a dot
 
 
 
===Digging deeper===
 
To better understand how to use the above resources, view the program source. Look at game.py for code relating to game strategy. [[View_Source]]
 
 
 
[[File:"Turtle in a Pond Activity" viewsource.png|400px]]
 
 
 
If your Sugar distribution includes the Gnome editor GEdit, you can use it to view and edit the program source. In Terminal type
 
 
 
gedit
 
 
 
You will find the program source at
 
 
 
/home/olpc/Activities/TurtleinaPond.activity
 
 
 
 
 
See [[Activity_Team/Modifing_an_Activity]] for other methods for viewing and editing the source.
 
 
 
=== Where to get Turtle in a Pond ===
 
 
 
The Turtle in a Pond activity is available for download from the [http://activities.sugarlabs.org Sugar activity portal]: [http://activities.sugarlabs.org/en-US/sugar/addon/4516 Turtle in a Pond]
 
 
 
The source code is available on [http://git.sugarlabs.org/turtlepond the Sugar Labs Gitorious server].
 
 
 
[[Category:Activity]]
 

Latest revision as of 23:07, 27 June 2018

Turtle in a Pond Activity

Read at https://help.sugarlabs.org/turtle_in_a_pond.html

The source file has been moved to GitHub