Features/GTK3/Porting
Porting an existing activity to GTK3
This is a guide to porting an existing activity from GTK2 to GTK3. It also shows the changes to use the new Sugar toolkit that also now uses GTK3. This guide uses the hello-world activity as a simple example.
Here are some instances of porting activities, for reference:
- Biorhythm
- Peru Learns English, includes GStreamer and GST update
- Port of Jump Activity
- Port of I-know-Madagascar
Steps to Port an Activity to Gtk3
- Read the Sugar Official Wiki
- Resolve any existing pull requests before porting to avoid conflicts at a later stage.
- Run this script that will convert automatically things as much as it can. This is to avoid some stressful manually conversions that a "simple script" can do using sed :)
- Follow the Code Guidelines during all the porting process
- Make the API changes in sugar-toolkit-gtk3
- Write comments on the code, by adding # README:, # TODO: and # FIXME: explaining what are the problems that you are having with that chunk of code. Put a link if it's necessary
API changes in sugar-toolkit
- The keep button has been removed
- The old-style toolbar has been removed
set_toolbar_box
is used instead ofset_toolbox
(see in Abacus)- Remove import of deprecated ActivityToolbox (see hello-world)
- Support for
service_name
andclass
tags in activity.info has been removed. Usebundle_id
instead ofservice_name
andexec
instead ofclass
(see in Record) sugar3.activity.Activity
does not have the window attribute. Use the.get_window()
method instead.
Port the activity from GTK2 to GTK3
To start, change the importing instruction for GTK from
import gtk
to
import gi gi.require_version('Gtk', '3.0') from gi.repository import Gtk
Note that require_version
needs to called only the first time when Gtk is being imported.
Similar imports that may be used are:
from gi.repository import Gdk, Pango, Gobject
Then you have to change each call that involves Gtk, for example creating a button will look now like this:
button = Gtk.Button()
A simple hello world program in GTK3 looks like this:
from gi.repository import Gtk def _destroy_cb(widget, data=None): Gtk.main_quit() w = Gtk.Window() w.connect("destroy", _destroy_cb) label = Gtk.Label('Hello World!') w.add(label) w.show_all() Gtk.main()
For porting your activity you do have to change your calls for accessing widgets and services in the new GTK3 sugar-toolkit as well. The new namespace is called sugar3, trying to reflect that GTK3 is the underlying technology. For example the import of the base activity class has to be changed from
from sugar.activity import activity
to
from sugar3.activity import activity
The changes that were needed to port the hello-world activity can be seen in this commit.
Simple example on creating a toolbar
One of Sugar's activity most unique user interface includes the toolbar. In order to reference the relevant modules and graphics, the sugar3 library has to be imported. These are the relevant ones that would enable us to create a simple toolbar containing the activity button and the stop button.
from sugar3.activity import activity from sugar3.graphics.toolbarbox import ToolbarBox from sugar3.activity.widgets import ActivityToolbarButton from sugar3.activity.widgets import StopButton from sugar3.graphics.toolbarbox import ToolbarButton from sugar3.graphics import style
Since the ActivityToolbar() module has been deprecated, the toolbar can now be called using
ToolbarBox()
Then, from the ToolbarBox(), include the ActivityButton and StopButton. In order for the StopButton to be align to the right as per Sugar activity interface, a separator has to be included as well.
toolbar_box = ToolbarBox() activity_button = ActivityToolbarButton(self) toolbar_box.toolbar.insert(activity_button, 0) activity_button.show() separator = Gtk.SeparatorToolItem() separator.props.draw = False separator.set_expand(True) toolbar_box.toolbar.insert(separator, -1) separator.show() stop_button = StopButton(self) toolbar_box.toolbar.insert(stop_button, -1) stop_button.show() self.set_toolbar_box(toolbar_box) toolbar_box.show()
Tools
There are tools to help you do the porting. There is a script in the pygobject repository for porting called pygi-convert.sh, more info about the script can be found in the PyGObject Introspection Porting guide.
Here is a script to automate the rename of the imports sugar to sugar3: sugar-convert.sh.
If you are having trouble finding how a particular GTK class/method/constant has been named in PyGI, run pygi-enumerate.py and grep the output. (this app lists all identified methods and constants). Usage example:
$ python pygi-enumerate.py | grep get_selection Gtk.AccelLabel.get_selection_bounds() (instance method) Gtk.Editable.get_selection_bounds() (instance method) Gtk.Entry.get_selection_bounds() (instance method) Gtk.IconView.get_selection_mode() (instance method) Gtk.Label.get_selection_bounds() (instance method) Gtk.SelectionData.get_selection() (instance method) Gtk.SpinButton.get_selection_bounds() (instance method) Gtk.TextBuffer.get_selection_bound() (instance method) Gtk.TextBuffer.get_selection_bounds() (instance method) Gtk.TreeView.get_selection() (instance method)
Constructor considerations
With PyGI it is possible to use Python-like constructors, or "new" functions e.g. the following are (usually) equivalent:
label = Gtk.Button() label = Gtk.Button.new()
However, the first form is preferred: it is more Python-like. Internally, the difference is that Gtk.Label.new() translates to a call to gtk_label_new(), whereas Gtk.Label() (the preferred form) will directly construct an instance of GtkLabel at the GObject level.
If the constructor takes parameters, they must be named. The parameters correspond to GObject properties in the API documentation which are usually marked as "Construct". For example, the following code will not work:
expander = Gtk.Expander("my expander")
The (confusing) error is:
TypeError: GObject.__init__() takes exactly 0 arguments (1 given)
The solution is to go to the GtkExpander API documentation and find the appropriate property that we wish to set. In this case it is label (which is a Construct property, further increasing our confidence of success), so the code should be:
expander = Gtk.Expander(label="my expander")
Combining the two points above, if you wish to call a construct-like function such as gtk_button_new_with_label(), you do have the option of calling Gtk.Button.new_with_label(), however if we check the GtkButton properties we see one called "label" which is equivalent. Therefore gtk_button_new_with_label("foo") should be called as:
button = Gtk.Button(label="foo")
HBox, VBox, pack_start and pack_end
GtkHBox and GtkVBox, commonly used containers in GTK2 code, have pack_start and pack_end methods. These take 4 parameters:
- The widget to pack into the container
- expand: Whether the child should receive extra space when the container grows (default True)
- fill: True if space given to child by the expand option is actually allocated to child, rather than just padding it. This parameter has no effect if expand is set to False. A child is always allocated the full height of a gtk.HBox and the full width of a gtk.VBox. This option affects the other dimension. (default True)
- padding: extra space in pixels to put between child and its neighbor (default 0)
In PyGTK, the expand, fill and padding parameters were optional: if unspecified, the default values above were used. In PyGI, these parameters are not optional: all 4 must be specified. Hence the rules for adding in the extra parameters are:
- If expand was not set, use value True
- If fill was not set, use value True. (however, if expand is False, this parameter gets ignored so False is an equally acceptable option when expand=False)
- If padding was not set, use value 0.
These parameters can be specified either as positional arguments or as named keyword arguments, however all 4 must always be specified. Some developers prefer keyword arguments, arguing that the following:
box.pack_start(widget, expand=True, fill=False, padding=4)
is much more readable than:
box.pack_start(widget, True, False, 4)
However, these functions are called extremely often; any mildly seasoned GTK developer will have memorized the order and meaning of the parameters. Some developers therefore prefer to avoid the extra work of dropping in hundreds of keyword arguments throughout the code and just use the positional ones. This is really up to you.
If you are using pack_start with the default values (expand=True, fill=True and padding=0), you can avoid using pack_start (and the parameter pain that it brings with it) by just using .add for some added cleanliness, e.g.
box.pack_start(widget, True, True, 0)
can be replaced with:
box.add(widget)
This is as far as you need to go for now. However, in GTK3, GtkVBox and GtkHBox have been deprecated, which means they might be removed in GTK3. The replacement is to use GtkBox directly, and you may wish to make this change now. e.g.:
vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL)
hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, homogeneous=True, spacing=8)
However, it must be noted that if GtkBox is used directly (instead of using GtkHBox/GtkVBox), the default value of expand is now False. The implications of this are:
- You need to check your .add() calls, as previously they would behave as pack_start with expand=True, but now they will behave as expand=False (you need to change them to use pack_start with expand=True to retain the old behaviour)
- Every single pack_start call that has expand=False and padding=0 (and any value of fill) can be converted to .add() for cleanliness
GtkAlignment considerations
In PyGTK, the gtk.Alignment constructor takes four optional parameters:
- xalign: the fraction of horizontal free space to the left of the child widget. Ranges from 0.0 to 1.0. Default value 0.0.
- yalign: the fraction of vertical free space above the child widget. Ranges from 0.0 to 1.0. Default value 0.0.
- xscale: the fraction of horizontal free space that the child widget absorbs, from 0.0 to 1.0. Default value 0.0.
- yscale: the fraction of vertical free space that the child widget absorbs, from 0.0 to 1.0. Default value 0.0
In PyGI/GTK3, these parameters are still optional when used in the Gtk.Alignment constructor (as keyword arguments, as explained above). However, the default values have changed. They are now:
- xalign: default value 0.5
- yalign: default value 0.5
- xscale: default value 1
- yscale: default value 1
If your code was relying on the default value of 0 for any of these parameters in PyGTK, you will now need to explicitly specify that in your constructor. Similarly, if you were previously using construction parameters to select the now-default values, those parameters can be dropped.
Additionally, PyGTK accepted these construction parameters as positional arguments. As explained above, they must now be converted to keyword arguments.
Gtk Menu Popup
The Gtk.Menu.popup function now works slightly differently. The user supplied positioning function now takes different parameters. These are menu, x, y, push_in and user_data.
Gdk
Previously, gdk was an attribute of the gtk module, which means that it can be called through gtk. For example, if we want to use color_parse():
gtk.gdk.color_parse(color)
However, what we have to do now is:
from gi.repository import Gdk
Then we can modify the code to the following:
Gdk.color_parse(color)
Pango
Following the release of Gtk3, we should not be importing pango like this:
import pango
In fact, we can now import pango as an attribute within the gtk3 library:
from gi.repository import Pango as pango
Gio.Settings from GConf
Any use of GConf should be ported to Gio.Settings.
Other considerations
self.allocation property is no longer available. Please search your code for "self.allocation" and replace it for "self.get_allocation()".
So to get the allocation size:
self.allocation.width self.allocation.height
should be replaced by:
self.get_allocated_width() self.get_allocated_height()
Constants
Most of the constants have slightly different formats, e.g.,
gtk.STATE_NORMAL became Gtk.StateFlags.NORMAL gtk.RESPONSE_ACCEPT became Gtk.ResponseType.ACCEPT gtk.JUSTIFY_CENTER became Gtk.Justification.CENTER gtk.RELIEF_NONE became Gtk.ReliefStyle.NONE
Pixbufs
The pixbuf libraies are in their own repository
from gi.repository import GdkPixbuf
GdkPixbuf.Pixbuf.new_from_file()
Changes to the Clipboard
Two things to note:
1. You need to specify a clipboard using get()
clipboard = Gtk.Clipboard.get(Gdk.SELECTION_CLIPBOARD)
2. You need to pass a length to set_text()
clipboard.set_text(string, len(string))
See [1] for more details.
Changes to Drag-and-Drop
Slightly different syntax:
self.drag_dest_set(Gtk.DestDefaults.ALL, [], Gdk.DragAction.COPY) self.drag_dest_set_target_list(Gtk.TargetList.new([])) self.drag_dest_add_text_targets() self.connect('drag_data_received', self._drag_data_received)
and:
data.get_text()
or:
data.get_image()
See [2] for more details.
Going from Drawable to Cairo
GTK-3 does not support gtk Drawable objects, so the first step is to get your activity running under Cairo.
import cairo # From activity.Activity, you inherit a canvas. # Create a Cairo context from the window. cairo_context = self.canvas.get_window().cairo_create() # Create an XLib surface to be used for drawing xlib_surface = surface.create_similar(cairo.CONTENT_COLOR, gtk.gdk.screen_width(), gtk.gdk.screen_height()) # You'll need a Cairo context from which you'll build a GTK Cairo context cairo_context = cairo.Context(xlib_surface) cairo_context = gtk.gdk.CairoContext(cairo_context) # Use this context as you would a Drawable, substituting Cairo commands # for gtk commands, e.g., cairo_context.move_to(0, 0) cairo_context.line_to(100, 100) # Cairo uses floats from 0 to 1 for RGB values cairo_context.set_source_rgb(r, g, b) cairo_context.rectangle(x, y, w, h) cairo_context.fill() # To invalidate a region to force a refresh, use: self.canvas.queue_draw_area(x, y, w, h) # Handle the expose event # "expose" became "draw" for the cairo signal def do_expose_event(self, event): # Create the cairo context cairo_context = self.canvas.get_window().cairo_create() cairo_context.rectangle(event.area.x, event.area.y, event.area.width, event.area.height) cairo_context.clip() cairo_context.set_source_surface(xlib_surface) cairo_context.paint()
Pango is a bit different when used with Cairo:
import pango, pangocairo # Again, from the xlib_surface... cairo_context = cairo.Context(xlib_surface) # Create a PangoCairo context cairo_context = pangocairo.CairoContext(cairo_context) # The pango layout is created from the Cairo context pango_layout = cairo_context.create_layout() # You still use pango to set up font descriptions. fd = pango.FontDescription('Sans') fd.set_size(12 * pango.SCALE) # Tell your pango layout about your font description pango_layout.set_font_description(fd) # Write text to your pango layout pango_layout.set_text('Hello world', -1) # Position it within the Cairo context cairo_context.save() cairo_context.translate(x, y) cairo_context.rotate(pi / 3) # You can rotate text and images in Cairo cairo_context.set_source_rgb(1, 0, 0) # Finally, draw the text cairo_context.update_layout(pango_layout) cairo_context.show_layout(pango_layout) cairo_context.restore()
To draw a bitmap...
# Again, from the xlib_surface... cairo_context = cairo.Context(xlib_surface) # Create a gtk context cairo_context = gtk.gdk.CairoContext(cairo_context) cairo_context.set_source_pixbuf(pixbuf, x, y) cairo_context.rectangle(x, y, w, h) cairo_context.fill()
To read a pixel from the xlib surface...
# create a new 1x1 cairo surface cairo_surface = cairo.ImageSurface(cairo.FORMAT_RGB24, 1, 1); cairo_context = cairo.Context(cairo_surface) # translate xlib_surface so that target pixel is at 0, 0 cairo_context.set_source_surface(xlib_surface, -x, -y) cairo_context.rectangle(0,0,1,1) cairo_context.set_operator(cairo.OPERATOR_SOURCE) cairo_context.fill() cairo_surface.flush() # ensure all writing is done # Read the pixel return (ord(pixels[2]), ord(pixels[1]), ord(pixels[0]), 0)
Going from Cairo in GTK-2 to Cairo in GTK-3
(For more detailes, see http://developer.gnome.org/pangomm/2.28/annotated.html)
The Cairo/Pango interaction is a little different:
from gi.repository import Pango, PangoCairo cairo_context = ... pango_layout = PangoCairo.create_layout(cairo_context) fd = Pango.FontDescription('Sans') fd.set_size(12 * Pango.SCALE) pango_layout.set_font_description(fd) pango_layout.set_text('Hello World', -1) cairo_context.set_source_rgb(1, 0, 0) PangoCairo.update_layout(cairo_context, pango_layout) PangoCairo.show_layout(cairo_context, pango_layout)
The get_extents() method if different in PangoCairo. It calculates an extent as a Rectangle, but doesn't return anything. There is a method, get_logical_extents() that returns a Rectangle. Alas, it is not necessarily available after v1.16. Note that Rectangle is not a list but a class with methods for get_x(), get_y(), get_width(), and get_height(), so you cannot iter over it.
Note that the cairo.Region will no longer work in Gtk+3
Replacing pixmaps with Cairo
You need to replace your pixmaps with Cairo in GTK3. For an example on how this is done, see: http://developer.gnome.org/gtk3/3.5/ch24s02.html#idp129615008
Taking a screenshot and making a thumbnail
To make a screenshot of the window:
width, height = window.get_width(), window.get_height() thumb_surface = Gdk.Window.create_similar_surface(window, cairo.CONTENT_COLOR, width, height) thumb_width, thumb_height = style.zoom(100), style.zoom(80) cairo_context = cairo.Context(thumb_surface) thumb_scale_w = thumb_width * 1.0 / width thumb_scale_h = thumb_height * 1.0 / height cairo_context.scale(thumb_scale_w, thumb_scale_h) Gdk.cairo_set_source_window(cairo_context, window, 0, 0) cairo_context.paint() thumb_surface.write_to_png(png_path_or_filelike_object)
Creating a video widget
Some necessary changes include:
Using
get_property('window').get_xid()
Instead of
window.xid
Using
set_double_buffered(False) set_app_paintable(True)
Instead of
unset_flags(gtk.DOUBLE_BUFFERED) set_flags(gtk.APP_PAINTABLE)
Hacks to help in porting
Use the same keyboard and mouse
If you have an XO, I'm sure you want to take a look at this...
Use Extended Python debugger
epdb library is useful to inspect the code while the Activity is running.
sudo yum install python-epdb
After that I put some trace point in the code where I can stop and make my tests by doing this:
import epdb;epdb.set_trace()
Finally I run Get Books Activity from the Terminal Activity to be able to write some code on a shell. This is the command that I use:
sugar-launch org.laptop.sugar.GetBooksActivity
See also Development Team/Debugging.
Check logs with multitail
Here is a really useful command to open new logs automatically: User:Humitos/MultiTail
Use the pygobject code as example
pygobject is what we use to make Gtk3 activities. So, it's really useful to take a look at the code examples that are there. Even more, you can run some demo application that show how to use something specific about the library.
- Clone the code:
git clone git://git.gnome.org/pygobject
- Run an example
cd pygobject cd demos/gtk-demo/demos python pixbuf.py
- Grep the code to search for something useful
cd pygobject git grep GdkPixbuf
Monitoring DBus
Not sure how this command works, but it can give us an interesting information. If you run this command and plug an USB drive you will see useful information
dbus-monitor --system
Port to Python 3
We are migrating towards Python 3. Python 3 does not support GTK+ 2. Hence, once the activity is ported to GTK+ 3, please consider porting the activity from Python 2 to Python 3.
Ref: Guide to port activities to Python 3
Releasing activities (for maintainers)
Once an activity is ported, a new release can be made. The major version should be greater than the existing one.
Please follow this guide for releasing a new version
Notes
These are the changes implemented by developers while porting activities
Gtk.Widget.hide_all()
does not exist anymore. We should use just.hide
- If the code creates some own object, and it defines some properties, you should use __gproperties__ dictionary: http://python-gtk-3-tutorial.readthedocs.org/en/latest/objects.html#GObject.GObject.__gproperties__
Gtk.ListStore
doesn't have the method .reorder. There is a ticket reported upstream about this.- I replaced the use of
dbus
by Gio to monitor the (dis)connection of pen drives - Migrate custom signals:
- If you have defined custom gtk objects with custom signal you should migrate them to the new way to do this. You should replace this: from gobject import signal_new, TYPE_INT, TYPE_STRING, TYPE_BOOLEAN, \ TYPE_PYOBJECT, TYPE_NONE, SIGNAL_RUN_LAST signal_new('extlistview-modified', gtk.TreeView, SIGNAL_RUN_LAST, TYPE_NONE, ()) by adding the signal definition inside the object that you are creating using the
__gsignals__
dictionary like this (in this case Gtk.TreeView is the class that our object inherits): from gi.repository import GObject class ExtListView(Gtk.TreeView): __gsignals__ = { 'extlistview-modified': (GObject.SignalFlags.RUN_LAST, None, ()), } The last argument of the signal definition are the argument types that the callback will receive.
- If you have defined custom gtk objects with custom signal you should migrate them to the new way to do this. You should replace this: from gobject import signal_new, TYPE_INT, TYPE_STRING, TYPE_BOOLEAN, \ TYPE_PYOBJECT, TYPE_NONE, SIGNAL_RUN_LAST signal_new('extlistview-modified', gtk.TreeView, SIGNAL_RUN_LAST, TYPE_NONE, ()) by adding the signal definition inside the object that you are creating using the
- Change the mouse cursor
- Example use case: When the activity is working and we want to show a work in progress cursor.
- Replace this:
self.window.set_cursor(gtk.gdk.Cursor(gtk.gdk.WATCH))
with:
from gi.repository import Gdk self.get_window().set_cursor(Gdk.Cursor(Gdk.CursorType.WATCH))
Resources
- PyGI Documentation: https://lazka.github.io/pgi-docs/
- PyGtk documentation
- Reference Manual
- Gdk documentation:
- OLPC Documentation: http://wiki.laptop.org/go/Activities/PortingToGtk3
- Used to know the arguments of
GdkPixbuf.Pixbuf.save_to_bufferv
https://mail.gnome.org/archives/javascript-list/2011-March/msg00001.html
- Pango documentation: http://developer.gnome.org/pangomm
- Gst-1.0 documentation: http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/index.html
- Gst-1.0 porting hints: https://wiki.ubuntu.com/Novacut/GStreamer1.0